鲁棒控制数学基础与相关概念系列A(三)-矩阵的奇异值分解

鲁棒控制数学基础与相关概念(三)-矩阵的奇异值分解


提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档


埃尔米特矩阵

若矩阵 A A A满足 A = A H A=A^{H} A=AH,我们称这样的矩阵为埃尔米特矩阵。对于埃尔米特矩阵满足下面的定理:
定理1 :任何 n n n阶矩阵都有,存在一个酉矩阵 U U U,使得 A = U T U H A=UTU^{H} A=UTUH成立。式中T的主对角元是 A A A的特征值。

半正定矩阵

定义1 :设 A A A n n n阶埃尔米特矩阵,如果对任意 n n n维非零复向量 x x x都有 x H A x ≥ 0 x^{H}Ax\geq 0 xHAx0,则称 A A A为半正定矩阵,记作 A ≥ 0 A\geq 0 A0
定理1 :矩阵 A A A 为半正定矩阵的充要条件是 A A A的所有特征值都是非负数。

奇异值分解

命题1:设矩阵 A ∈ C m × n A\in C^{m\times n} ACm×n,则有
1) A H A 与 A A H A^{H}A与AA^H AHAAAH的特征值均为非负实数;
2) A H A 与 A A H A^{H}A与AA^H AHAAAH的非零特征值相同;

证明:设 x ≠ 0 x\neq 0 x=0为矩阵 A H A A^HA AHA的特征值 λ \lambda λ对应的特征向量。由于 A H A A^HA AHA是埃尔米特矩阵, x H A H A x = ( A x ) H ( A x ) ≥ 0 x^HA^HAx=(Ax)^H(Ax)\geq 0 xHAHAx=(Ax)H(Ax)0,所以 A H A A^HA AHA是半正定的,从而推出 λ ≥ 0 \lambda\geq 0 λ0

定义2 :设 A ∈ C r m × n , A H A A\in C^{m\times n}_r,A^HA ACrm×n,AHA的特征值为
λ 1 ≥ λ 2 ≥ λ 3 ≥ ⋯ λ r > λ r + 1 = λ r + 2 = ⋯ = λ n = 0 \quad\quad\quad\quad\quad \lambda_1\geq \lambda_2\geq\lambda_3\geq\cdots\lambda_r>\lambda_{r+1}=\lambda_{r+2}=\cdots=\lambda_n=0 λ1λ2λ3λr>λr+1=λr+2==λn=0
则称 σ i = λ i ( i = 1 , 2 , ⋯   , r ) \sigma_i=\sqrt{\lambda_i}(i=1,2,\cdots,r) σi=λi (i=1,2,,r)为矩阵 A A A的正奇异值,简称奇异值

定义3:设 A ∈ C r m × n A\in C^{m\times n}_r ACrm×n,存在 m m m阶酉矩阵 U U U n n n阶酉矩阵 V V V,使得
A = U [ Δ 0 0 0 ] V H A=U \left[ \begin{matrix} \Delta & 0 \\ 0 & 0 \\ \end{matrix} \right] V^{H} A=U[Δ000]VH
其中 Δ = d i a g ( σ 1 , σ 2 , ⋯   , σ r ) \Delta=diag(\sigma_1,\sigma_2,\cdots,\sigma_r) Δ=diag(σ1,σ2,,σr)

证明:由于 A A H AA^H AAH总是半正定的且为埃尔米特矩阵,故存在酉矩阵 U U U,使得 T = U H A A H U = d i a g { λ 1 . λ 2 , ⋯   , λ r , 0 , ⋯   , 0 } T=U^HAA^HU=diag\left\{\lambda_1.\lambda_2,\cdots,\lambda_r,0,\cdots,0\right\} T=UHAAHU=diag{λ1.λ2,,λr,0,,0}。记 U = ( x 1 , x 2 , ⋯   , x r , x r + 1 , ⋯   , x m ) = ( U 1 , U 2 ) U=(x_1,x_2,\cdots,x_r,x_{r+1},\cdots,x_m)=(U_1,U_2) U=(x1,x2,,xr,xr+1,,xm)=(U1,U2)代入上式得到:
( U 1 , U 2 ) H A A H ( U 1 , U 2 ) = d i a g { λ 1 . λ 2 , ⋯   , λ r , 0 , ⋯   , 0 } (U_1,U_2)^HAA^H(U_1,U_2)=diag\left\{\lambda_1.\lambda_2,\cdots,\lambda_r,0,\cdots,0\right\} (U1,U2)HAAH(U1,U2)=diag{λ1.λ2,,λr,0,,0}
进而得到
U 1 H A A H U 1 = d i a g { λ 1 . λ 2 , ⋯   , λ r } = Δ 2 = Δ Δ H U 2 H A A H U 2 = 0 U_1^HAA^HU_1=diag\left\{\lambda_1.\lambda_2,\cdots,\lambda_r\right\}=\Delta^2=\Delta\Delta^H\\ U_2^HAA^HU_2=0 U1HAAHU1=diag{λ1.λ2,,λr}=Δ2=ΔΔHU2HAAHU2=0
所以得到 ( A H U 2 ) H ( A H U 2 ) = 0 (A^HU_2)^H(A^HU_2)=0 (AHU2)H(AHU2)=0,即 A H U 2 = 0 A^HU_2=0 AHU2=0或者 U 2 H A = 0 U^H_2A=0 U2HA=0
V 1 = A H U 1 ( Δ − 1 ) H V_1=A^HU_1(\Delta^{-1})^H V1=AHU1(Δ1)H,则有 V 1 H V 1 = Δ − 1 Δ Δ H ( Δ − 1 ) H = I r V_1^HV_1=\Delta^{-1}\Delta\Delta^H(\Delta^{-1})^H=I_r V1HV1=Δ1ΔΔH(Δ1)H=Ir,即 V 1 ∈ U n × r V_1\in U^{n\times r} V1Un×r酉矩阵。再令 V 2 ∈ U n × ( n − r ) V_2\in U^{n\times (n-r)} V2Un×(nr),使 V = ( V 1 , V 2 ) ∈ U n × n V=(V_1,V_2)\in U^{n\times n} V=(V1,V2)Un×n,则有 V 1 H V 2 = Δ − 1 U 1 H A V 2 = 0 V_1^HV_2=\Delta^{-1}U_1^HAV_2=0 V1HV2=Δ1U1HAV2=0,进而 U 1 H A V 2 = 0 U_1^HAV_2=0 U1HAV2=0。故有
U H A V = [   U 1 H A A H U 1 ( Δ − 1 ) H 0 0 0 ] = [   Δ 0   0 0 ] U^HAV= \left[ \begin{matrix} \ U_1^HAA^HU_1(\Delta^{-1})^H & 0 \\ 0 & 0 \\ \end{matrix} \right]= \left[ \begin{matrix} \ \Delta & 0 \\ \ 0 & 0 \\ \end{matrix} \right] UHAV=[ U1HAAHU1(Δ1)H000]=[ Δ 000]

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值