鲁棒控制数学基础及相关概念系列A(五) —— 矩阵范数

鲁棒控制数学基础及相关概念(五) —— 矩阵范数


矩阵范数

定义1 :设 A ∈ C m × n A\in C^{m\times n} ACm×n,按某一法则在 C m × n C^{m\times n} Cm×n上规定 A A A是一个实值函数,记作 ∣ ∣ A ∣ ∣ ||A|| ∣∣A∣∣,它满足以下4个条件:
( 1 ) 非负性:如果 A ≠ 0 , 则 ∣ ∣ A ∣ ∣ > 0 ; 如果 A = 0 ,则 ∣ ∣ A ∣ ∣ = 0 ; ( 2 ) 齐次性:对任意的 k ∈ C , ∣ ∣ k A ∣ ∣ = ∣ k ∣ ∣ ∣ A ∣ ∣ ; ( 3 ) 三角不等式:对任意的矩阵 A , B ∈ C m × n , ∣ ∣ A + B ∣ ∣ ≤ ∣ ∣ A ∣ ∣ + ∣ ∣ B ∣ ∣ ; ( 4 ) 次乘性:当矩阵乘积 A B 有意义时,若有 ∣ ∣ A B ∣ ∣ ≤ ∣ ∣ A ∣ ∣ ∣ ∣ B ∣ ∣ (1) 非负性:如果A\neq 0, 则||A||>0;如果A=0,则||A||=0;\\ (2) 齐次性:对任意的k\in C,||kA||=|k|||A||;\\ (3) 三角不等式:对任意的矩阵A,B\in C^{m\times n}, ||A+B||\leq ||A||+||B||;\\ (4) 次乘性:当矩阵乘积AB有意义时,若有||AB||\leq||A||||B|| (1)非负性:如果A=0,∣∣A∣∣>0;如果A=0,则∣∣A∣∣=0;(2)齐次性:对任意的kC,∣∣kA∣∣=k∣∣∣A∣∣;(3)三角不等式:对任意的矩阵A,BCm×n,∣∣A+B∣∣∣∣A∣∣+∣∣B∣∣;(4)次乘性:当矩阵乘积AB有意义时,若有∣∣AB∣∣∣∣A∣∣∣∣B∣∣
则称 ∣ ∣ A ∣ ∣ ||A|| ∣∣A∣∣为矩阵范数。(向量范数没有次乘性)

定理1:设 A ∈ C m × n , x = ( x 1 , x 2 , ⋯   , x n ) T ∈ C n A\in C^{m\times n},x=(x_1,x_2,\cdots,x_n)^T\in C^n ACm×n,x=(x1,x2,,xn)TCn,且在空间内已规定了向量范数。定义
∣ ∣ A ∣ ∣ = s u p ∣ ∣ x ∣ ∣ ≠ 0 ∣ ∣ A x ∣ ∣ ∣ ∣ x ∣ ∣ = m a x ∣ ∣ x ∣ ∣ = 1 ∣ ∣ A x ∣ ∣ ||A||=sup_{||x||\neq 0}{\frac{||Ax||}{||x||}}=max_{||x||=1}{||Ax||} ∣∣A∣∣=sup∣∣x∣∣=0∣∣x∣∣∣∣Ax∣∣=max∣∣x∣∣=1∣∣Ax∣∣
称为由向量范数诱导的矩阵范数
在鲁棒控制中,最常见的矩阵范数为谱范数。 ∣ ∣ A ∣ ∣ 2 = λ m a x ( A H A ) ||A||_2=\sqrt{\lambda_{max}(A^HA)} ∣∣A2=λmax(AHA) ,即最大奇异值。
证明如下:设 λ 1 ≥ λ 2 ≥ ⋯ ≥ λ n ≥ 0 \lambda_1\geq\lambda_2\geq\cdots\geq\lambda_n\geq0 λ1λ2λn0 A H A A^HA AHA的特征值,而 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn是对应于这些特征值的一组标准正交特征向量,任何一个范数为1的向量 x x x可以表示为
x = a 1 x 1 + a 2 x 2 + ⋯ + a n x n , x=a_1x_1+a_2x_2+\cdots+a_nx_n, x=a1x1+a2x2++anxn,

( x , x ) = ∣ a 1 ∣ 2 + ∣ a 2 ∣ 2 + ⋯ + ∣ a n ∣ 2 = 1 ; (x,x)=|a_1|^2+|a_2|^2+\cdots+|a_n|^2=1; (x,x)=a12+a22++an2=1;
又因为 ∣ ∣ A ∣ ∣ 2 = ( A x , A x ) = ( x , A H A x ) ||A||^2=(Ax,Ax)=(x,A^HAx) ∣∣A2=(Ax,Ax)=(x,AHAx),所以有
∣ ∣ A x ∣ ∣ 2 = ( x , A H A x ) = ( a 1 x 1 + a 2 x 2 + ⋯ + a n x n , λ 1 a 1 x 1 + ⋯ + λ n a n x n ) = λ 1 ∣ a 1 ∣ 2 + λ 2 ∣ a 2 ∣ 2 + ⋯ + λ n ∣ a n ∣ 2 ≤ λ 1 ( ∣ a 1 ∣ 2 + ∣ a 2 ∣ 2 + ⋯ + ∣ a n ∣ 2 ) = λ 1 = λ m a x ( A H A ) ||Ax||^2=(x,A^HAx)\\ =(a_1x_1+a_2x_2+\cdots+a_nx_n,\lambda_1a_1x_1+\cdots+\lambda_na_nx_n)\\ =\lambda_1|a_1|^2+\lambda_2|a_2|^2+\cdots+\lambda_n|a_n|^2\\ \leq \lambda_1(|a_1|^2+|a_2|^2+\cdots+|a_n|^2)=\lambda_1=\lambda_{max}(A^HA) ∣∣Ax2=(x,AHAx)=(a1x1+a2x2++anxn,λ1a1x1++λnanxn)=λ1a12+λ2a22++λnan2λ1(a12+a22++an2)=λ1=λmax(AHA)

谱范数的性质

定理2:设 A ∈ C m × n , U ∈ C m × m , V ∈ C n × n A\in C^{m\times n},U \in C^{m\times m}, V \in C^{n\times n} ACm×n,UCm×m,VCn×n U H U = I m , V H V = I n U^HU=I_m,V^HV=I_n UHU=Im,VHV=In,则 ∣ ∣ U A V ∣ ∣ 2 = ∣ ∣ A ∣ ∣ 2 ||UAV||_2=||A||_2 ∣∣UAV2=∣∣A2;
定理3:设 A ∈ C m × n A\in C^{m\times n} ACm×n,若 ∣ ∣ A ∣ ∣ < 1 ||A||<1 ∣∣A∣∣<1,则 I − A I-A IA为非奇异矩阵,且
∣ ∣ ( I − A ) − 1 ∣ ∣ ≤ ( 1 − ∣ ∣ A ∣ ∣ ) − 1 ||(I-A)^{-1}||\leq (1-||A||)^{-1} ∣∣(IA)1∣∣(1∣∣A∣∣)1
证明如下:
x x x为任一非零向量,则
∣ ∣ ( I − A ) x ∣ ∣ = ∣ ∣ x − A x ∣ ∣ ||(I-A)x||=||x-Ax|| ∣∣(IA)x∣∣=∣∣xAx∣∣
由三角不等式得, ∣ ∣ x ∣ ∣ ≤ ∣ ∣ x − A x ∣ ∣ + ∣ ∣ A x ∣ ∣ ||x||\leq ||x-Ax||+||Ax|| ∣∣x∣∣∣∣xAx∣∣+∣∣Ax∣∣
所以得到:
∣ ∣ ( I − A ) x ∣ ∣ ≥ ∣ ∣ x ∣ ∣ − ∣ ∣ A x ∣ ∣ ≥ ∣ ∣ x ∣ ∣ − ∣ ∣ A ∣ ∣ ∣ ∣ x ∣ ∣ = ( 1 − ∣ ∣ A ∣ ∣ ) ∣ ∣ x ∣ ∣ > 0. ||(I-A)x||\geq ||x||-||Ax||\geq ||x||-||A||||x||=(1-||A||)||x||>0. ∣∣(IA)x∣∣∣∣x∣∣∣∣Ax∣∣∣∣x∣∣∣∣A∣∣∣∣x∣∣=(1∣∣A∣∣)∣∣x∣∣>0.
x ≠ 0 x\neq 0 x=0, 则 ( I − A ) x ≠ 0 (I-A)x\neq 0 (IA)x=0,从而方程 ( I − A ) x = 0 (I-A)x=0 (IA)x=0无非零解,故矩阵 I − A I-A IA非奇异。
因为 I − A I-A IA非奇异,故有
( I − A ) − 1 = [ I − A + A ] ( I − A ) − 1 = I + A ( I − A ) − 1 (I-A)^{-1}=[I-A+A](I-A)^{-1}=I+A(I-A)^{-1} (IA)1=[IA+A](IA)1=I+A(IA)1
从而 ∣ ∣ ( I − A ) − 1 ∣ ∣ ≤ ∣ ∣ I ∣ ∣ + ∣ ∣ A ∣ ∣    ∣ ∣ ( I − A ) − 1 ∣ ∣ = 1 + ∣ ∣ A ∣ ∣    ∣ ∣ ( I − A ) − 1 ∣ ∣ ||(I-A)^{-1}||\leq ||I||+||A|| \;||(I-A)^{-1}||=1+||A||\;||(I-A)^{-1}|| ∣∣(IA)1∣∣∣∣I∣∣+∣∣A∣∣∣∣(IA)1∣∣=1+∣∣A∣∣∣∣(IA)1∣∣
所以, ∣ ∣ ( I − A ) − 1 ∣ ∣ ≤ 1 1 − ∣ ∣ A ∣ ∣ ||(I-A)^{-1}||\leq \frac{1}{1-||A||} ∣∣(IA)1∣∣1∣∣A∣∣1

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值