鲁棒控制数学基础及相关概念系列B(二)——系统的能控、能观、可镇定以及可检测

鲁棒控制数学基础及相关概念系列B(二)——系统的能控、能观、可镇定以及可检测

1960年由卡尔曼最先提出系统的能控性与能观性。对于一个控制系统,特别是多变量控制系统,必须回答的两个问题:

  1. 在有限时间内,控制作用能否使系统从初始状态转移到要求的状态?
  2. 在有限时间内,能否通过对系统输出的测定来估计系统的初始状态?
  3. 本文将围绕线性定常连续系统来粗略地讲解系统的能控性、能观性、可镇定性以及可检测性。
  4. 设线性定常连续系统的状态方程为:
    { x ⋅ = A x + B u y = C x + D u \left\{ \begin{aligned} \overset{\cdot}{x}&=Ax+Bu \\ y&=Cx+Du \\ \end{aligned} \right. {xy=Ax+Bu=Cx+Du
    式中, x x x n n n维状态向量, u u u p p p维输入向量, A A A n × n n\times n n×n系统矩阵, B B B n × p n\times p n×p控制矩阵。

线性定常连续系统的能控性

定义1:对于系统,若存在一分段连续控制向量 u ( t ) u(t) u(t),能在有限时间区间 [ t 0 , t 1 ] [t_0,t_1] [t0,t1]内,将系统从初始状态 x ( t 0 ) x(t_0) x(t0)转移到任意终端状态 x ( t 1 ) x(t_1) x(t1),那么就称此状态是能控的。若系统任意 t 0 t_0 t0时刻的所有状态 x ( t 0 ) x(t_0) x(t0)都是能控的,就称此系统是状态完全能控的,简称能控

能控性判据:

系统状态完全能控的充分必要条件是能控性矩阵 U c = [ B A B ⋯ A n − 1 B ] U_c=[B \quad AB \quad \cdots \quad A^{n-1}B] Uc=[BABAn1B]的秩为 n n n
证明如下:
已知系统状态方程的解在 t 1 t_1 t1时刻的值可以表示为
x ( t 1 ) = e A ( t 1 − t 0 ) x ( t 0 ) + ∫ t 0 t 1 e A ( t 1 − τ ) B u ( τ )   d τ x(t_1)=e^{A(t_1-t_0)}x(t_0)+\int_{t_0}^{t_1} {e^{A(t_1-\tau)}Bu(\tau)} \,{\rm d}\tau x(t1)=eA(t1t0)x(t0)+t0t1eA(t1τ)Bu(τ)dτ
不失一般性,假设 x ( t 1 ) = 0 x(t_1)=0 x(t1)=0 t 0 = 0 t_0=0 t0=0。根据能控性的定义,有 x ( 0 ) = − ∫ 0 t 1 e − A ( τ ) B u ( τ )   d τ x(0)=-\int_{0}^{t_1} {e^{-A(\tau)}Bu(\tau)} \,{\rm d}\tau x(0)=0t1eA(τ)Bu(τ)dτ。利用凯莱-哈密顿定理,将 e − A τ e^{-A\tau} eAτ表示为 ∑ k = 0 n − 1 α k ( τ ) A k \sum_{k=0}^{n-1}\alpha_k(\tau)A^k k=0n1αk(τ)Ak代入上面的公式可以得到:
− x ( 0 ) = ∫ 0 t 1 ∑ k = 0 n − 1 α k ( τ ) A k B u ( τ ) d τ = ∑ k = 0 n − 1 A k B ∫ 0 t 1 α k ( τ ) u ( τ ) d τ -x(0)=\int_{0}^{t_1}\sum_{k=0}^{n-1}\alpha_k(\tau)A^kBu(\tau){\rm d}\tau=\sum_{k=0}^{n-1}A^kB\int_{0}^{t_1}\alpha_k(\tau)u(\tau){\rm d}\tau x(0)=0t1k=0n1αk(τ)AkBu(τ)dτ=k=0n1AkB0t1αk(τ)u(τ)dτ
令向量 β k \beta_k βk等于
β k = [ β k 1 β k 1 ⋮   β k p ] = [ ∫ 0 t 1 α k ( τ ) u 1 ( τ ) d τ ∫ 0 t 1 α k ( τ ) u 2 ( τ ) d τ ⋮ ∫ 0 t 1 α k ( τ ) u p ( τ ) d τ ] \beta_k=\left[ \begin{matrix} \beta_{k_1} \\ \beta_{k_1} \\ \vdots \\ \ \beta_{k_p} \end{matrix} \right]= \left[ \begin{matrix} \int_{0}^{t_1}\alpha_k(\tau)u_1(\tau) {\rm d}\tau \\ \int_{0}^{t_1}\alpha_k(\tau)u_2(\tau) {\rm d}\tau \\ \vdots \\ \int_{0}^{t_1}\alpha_k(\tau)u_p(\tau) {\rm d}\tau \end{matrix} \right] βk= βk1βk1 βkp = 0t1αk(τ)u1(τ)dτ0t1αk(τ)u2(τ)dτ0t1αk(τ)up(τ)dτ
x ( 0 ) x(0) x(0)可以写成
− x ( 0 ) = ∑ k = 0 n − 1 A k B [ β k 1 β k 1 ⋮   β k p ] = ∑ k = 0 n − 1 A k [ b 1 b 2 ⋯ b p ] [ β k 1 β k 1 ⋮   β k p ] = [ b 1 ⋯ b p A b 1 ⋯ A b p ⋯ A n − 1 b 1 ⋯ A n − 1 b p ] β = U β -x(0)=\sum_{k=0}^{n-1}A^kB\left[ \begin{matrix} \beta_{k_1} \\ \beta_{k_1} \\ \vdots \\ \ \beta_{k_p} \end{matrix} \right]=\sum_{k=0}^{n-1}A^k\left[ \begin{matrix} b_1 & b_2 & \cdots & b_p \end{matrix} \right]\left[ \begin{matrix} \beta_{k_1} \\ \beta_{k_1} \\ \vdots \\ \ \beta_{k_p} \end{matrix} \right]\\= \left[ \begin{matrix} b1 & \cdots & b_p & Ab_1 & \cdots & Ab_p & \cdots & A^{n-1}b_1 & \cdots & A^{n-1}b_p \end{matrix} \right]\beta=U\beta x(0)=k=0n1AkB βk1βk1 βkp =k=0n1Ak[b1b2bp] βk1βk1 βkp =[b1bpAb1AbpAn1b1An1bp]β=Uβ

若想让方程有解,则矩阵 U U U应该为非奇异矩阵,即矩阵 U U U为满秩 r = r a n k ( U ) = m i n ( n , n p ) r=rank(U)=min(n,np) r=rank(U)=min(n,np)

定理1:关于系统能控性,下述四个命题是等价的

  1. ( A , B ) (A,B) (A,B)是能控的;
  2. 满足满秩条件: U c = [ B A B ⋯ A n − 1 B ] U_c=[B \quad AB \quad \cdots \quad A^{n-1}B] Uc=[BABAn1B]的秩为 n n n;
  3. 存在一个实数矩阵 F F F,使 A + B F A+BF A+BF具有任意指定的 n n n个对称于实轴的复数特征值;
  4. 对于任意的复数 λ \lambda λ,有 r a n k [ λ I − A B ] = n rank[\lambda I-A \quad B]=n rank[λIAB]=n

线性系统的能观性

定义2:对于线性定常系统,在任意给定的输入 u ( t ) u(t) u(t)下,能够根据输出量 y ( t ) y(t) y(t)在有限时间区间内 [ t 0 , t 1 ] [t_0,t_1] [t0,t1]内的测量值,唯一地确定系统在 t 0 t_0 t0时刻的初始状态 x ( t 0 ) x(t_0) x(t0),就称系统在 t 0 t_0 t0时刻是能观测的。若在任意初始时刻系统都能观测,则称系统是状态完全能观测的,简称能观测的。

能观性判据:

线性定常系统状态完全能观测的充分必要条件是能观测性矩阵 U o = [ C C A ⋮ C A n − 1 ] U_o=\left[ \begin{matrix} C\\ CA\\ \vdots\\ CA^{n-1} \end{matrix} \right] Uo= CCACAn1 的秩为 n n n

对于系统能观性,同样存在下面四个等价的命题:

  1. ( C , A ) (C,A) (C,A)是能观的;
  2. 满足上述的能观矩阵的满秩条件;
  3. 存在一个实数矩阵 L L L,使 A + L C A+LC A+LC具有任意指定的 n n n个对称于实轴的复数特征值;
  4. 对于任意的复数 λ \lambda λ,有 r a n k [ λ I − A C ] T = n rank[\lambda I-A \quad C]^{T}=n rank[λIAC]T=n

线性定常系统的能控能观分解

在我们对线性系统的能控和能观性有了些许了解之后,对于很多多变量系统,我们可以发现系统不能控或者不能观并不意味着所有的状态都不能控或者不能观。下面我们将了解一下,如何将系统中能控或者能观部分与不能控或者不能观部分区分开来,这将更好的帮助我们对系统的分析设计。

线性系统的能控性分解

设某一线性系统的能控矩阵 U c U_c Uc的秩为 n 1 < n n_1<n n1<n,即系统不完全能控。
定理2:存在非奇异矩阵 T c T_c Tc,该矩阵 T c T_c Tc是由能控矩阵的线性无关向量组所构成的非奇异矩阵。对原系统进行状态变换 ξ = T c − 1 x \xi=T_c^{-1} x ξ=Tc1x,可使系统的状态空间变换成
{ ξ ⋅ = T c − 1 A T c ξ + T c − 1 B u y = C T c ξ + D u \left\{ \begin{aligned} \overset{\cdot}{\xi}&=T_c^{-1}AT_c\xi+T_c^{-1}Bu \\ y&=CT_c\xi+Du \\ \end{aligned} \right. ξy=Tc1ATcξ+Tc1Bu=CTcξ+Du
其中, T c − 1 A T c = [ A 11 ^ A 12 ^ 0 A 22 ^ ] , T c − 1 B = [ B 1 ^ 0 ] , C T c = [ C 1 ^ C 2 ^ ] T_c^{-1}AT_c=\left[ \begin{array} {c | c} \widehat{A_{11}} & \widehat{A_{12}} \\ \hline 0 & \widehat{A_{22}} \end{array} \right], T_c^{-1}B=\left[ \begin{array} {c} \widehat{B_{1}} \\ \hline 0 \end{array} \right],CT_c=\left[ \begin{array} {c | c} \widehat{C_{1}} & \widehat{C_{2}} \\ \end{array} \right] Tc1ATc=[A11 0A12 A22 ],Tc1B=[B1 0],CTc=[C1 C2 ]

在变换后的系统,将前 n 1 n_1 n1维部分提取出来,得到 ξ 1 ⋅ = A 11 ^ ξ 1 + A 12 ^ ξ 2 + B 1 ^ u \overset{\cdot}{\xi_1}=\widehat{A_{11}} \xi_1 + \widehat{A_{12}} \xi_2+\widehat{B_{1}}u ξ1=A11 ξ1+A12 ξ2+B1 u,其余部分为不可控子系统。

定理3能控子系统的传递函数与原系统的传递函数矩阵相同。
证明如下:
G ′ ( s ) = C T c ( s I − T c − 1 A T c ) − 1 T c − 1 B + D = C T c s − 1 I T c B − C T c T c − 1 A − 1 T c T c − 1 B + D = C s − 1 B − C A − 1 B + D = C ( s − 1 I − A − 1 ) B + D = C ( s I − A ) − 1 + D = G ( s ) G^{'}(s)=CT_c(sI-T_c^{-1}AT_c)^{-1}T_{c}^{-1}B+D=CT_cs^{-1}IT_cB-CT_cT_c^{-1}A^{-1}T_cT_c^{-1}B+D=Cs^{-1}B-CA^{-1}B+D\\ =C(s^{-1}I-A^{-1})B+D=C(sI-A)^{-1}+D=G(s) G(s)=CTc(sITc1ATc)1Tc1B+D=CTcs1ITcBCTcTc1A1TcTc1B+D=Cs1BCA1B+D=C(s1IA1)B+D=C(sIA)1+D=G(s)
由此可见,不可控状态不会出现在系统传递函数之中。

线性系统的能观性分解

定理4:存在非奇异矩阵 T o T_o To,该矩阵是由能观矩阵的 n 2 n_2 n2个线性无关的行向量组成的非奇异矩阵。用它进行状态变换 ζ = T o − 1 x \zeta=T_o^{-1}x ζ=To1x,得到线性变换后的系统:

{ ζ ⋅ = T o − 1 A T o ζ + T o − 1 B u y = C T o ζ + D u \left\{ \begin{aligned} \overset{\cdot}{\zeta}&=T_o^{-1}AT_o\zeta+T_o^{-1}Bu \\ y&=CT_o\zeta+Du \\ \end{aligned} \right. ζy=To1AToζ+To1Bu=CToζ+Du
其中, T o − 1 A T o = [ A 11 ^ 0 A 21 ^ A 22 ^ ] , T o − 1 B = [ B 1 ^ B 2 ^ ] , C T o = [ C 1 ^ 0 ] T_o^{-1}AT_o=\left[ \begin{array} {c | c} \widehat{A_{11}} & 0 \\ \hline \widehat{A_{21}} & \widehat{A_{22}} \end{array} \right], T_o^{-1}B=\left[ \begin{array} {c} \widehat{B_{1}} \\ \hline \widehat{B_{2}} \\ \end{array} \right],CT_o=\left[ \begin{array} {c | c} \widehat{C_{1}} & 0\\ \end{array} \right] To1ATo=[A11 A21 0A22 ],To1B=[B1 B2 ],CTo=[C1 0]

变换后的系统为:
{ ζ 1 ⋅ = A 11 ^ ζ 1 + B 1 ^ u y = C 1 ^ ζ 1 + D u \left\{ \begin{aligned} \overset{\cdot}{\zeta_1}&=\widehat{A_{11}} \zeta_1+\widehat{B_{1}} u \\ y&=\widehat{C_{1}}\zeta_1+Du \\ \end{aligned} \right. ζ1y=A11 ζ1+B1 u=C1 ζ1+Du
该子系统为能观测子系统,其余部分是不能观测子系统。
同样,能观测子系统的传递函数与原系统的传递函数矩阵相同,不能观测状态不会出现在系统的传递函数矩阵当中。

能控性、能观性与传递函数的关系

对于单输入单输出系统,我们知道它的传递函数形式为 C a d j ( s I − A ) d e t ( s I − A ) B C\frac{adj(sI-A)}{det(sI-A)}B Cdet(sIA)adj(sIA)B。如果令上面的分子多项式或分母多项式等于零便可得到该系统的零点与极点。
定理5:系统能控能观的充要条件是传递函数 g ( s ) g(s) g(s)中没有零极点对消现象。
证明如下:必要性证明。设系统能控又能观,而在传递函数中,存在零极点对消的情况,即存在 s = s 0 s=s_0 s=s0,使得分子、分母多项式 N ( s 0 ) = D ( s 0 ) = 0 N(s_0)=D(s_0)=0 N(s0)=D(s0)=0
因为 ( s I − A ) − 1 = a d j ( s I − A ) d e t ( s I − A ) (sI-A)^{-1}=\frac{adj(sI-A)}{det(sI-A)} (sIA)1=det(sIA)adj(sIA),即 d e t ( s I − A ) = ( s I − A ) a d j ( s I − A ) det(sI-A)=(sI-A)adj(sI-A) det(sIA)=(sIA)adj(sIA),将 s 0 s_0 s0代入上面的公式,得到 A a d j ( s 0 I − A ) = s 0 a d j ( s 0 I − A ) Aadj(s_0I-A)=s_0adj(s_0I-A) Aadj(s0IA)=s0adj(s0IA),左右两边同时乘上C和B,得到 C A a d j ( s 0 I − A ) B = s 0 C a d j ( s 0 I − A ) B = s 0 N ( s 0 ) = 0 CAadj(s_0I-A)B=s_0Cadj(s_0I-A)B=s_0N(s_0)=0 CAadj(s0IA)B=s0Cadj(s0IA)B=s0N(s0)=0。同样,利用这种思路,将式子不断乘 C A n − 1 CA^{n-1} CAn1 B B B,最后我们得到:
[ C C A ⋮ C A n − 1 ] a d j ( s 0 I − A ) = 0 \left[ \begin{matrix} C\\ CA\\ \vdots\\ CA^{n-1} \end{matrix} \right]adj(s_0I-A)=0 CCACAn1 adj(s0IA)=0
又因为这个系统是能观的,所以 a d j ( s 0 I − A ) = 0 adj(s_0I-A)=0 adj(s0IA)=0。又因为 a d j ( s 0 I − A ) = ∑ k = 0 n − 1 p k ( s ) A k = 0 , 其中 p k ( s ) 为一个非零向量 adj(s_0I-A)=\sum_{k=0}^{n-1}p_k(s)A^k=0,其中p_k(s)为一个非零向量 adj(s0IA)=k=0n1pk(s)Ak=0,其中pk(s)为一个非零向量,将上式展开得到:
[ b 1 ⋯ b p A b 1 ⋯ A b p ⋯ A n − 1 b 1 ⋯ A n − 1 ] P = 0 \left[ \begin{matrix} b1 & \cdots & b_p & Ab_1 & \cdots & Ab_p & \cdots & A^{n-1}b_1 & \cdots & A^{n-1} \end{matrix} \right]P=0 [b1bpAb1AbpAn1b1An1]P=0
很显然左侧的能控矩阵是线性相关的,即该系统部分能控,这与假设是矛盾的。所以,传递函数一定不存在零极点对消现象。
因此,存在两条结论:

  1. 一个系统的传递函数所表示的是系统即能控又能观的一部分子系统
  2. 一个系统的传递函数若存在零极点对消现象,则视系统状态变量的选择不同,系统或是不能控的或是不能观的。

系统的能控标准型与能观标准型

能控标准型

若系统的状态空间经过线性变换可以变为:
A = [ 0 1 0 ⋯ 0 0 0 1 ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ 0 0 0 ⋯ 1 − a n − a n − 1 − a n − 2 ⋯ − a 1 ] , b = [ 0 0 ⋮ 0 1 ] A=\left[ \begin{matrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & 0 & \cdots & 1\\ -a_n & -a_{n-1} & -a_{n-2} & \cdots & -a_1\\ \end{matrix} \right], b=\left[ \begin{matrix} 0 \\ 0 \\ \vdots \\ 0\\ 1\\ \end{matrix} \right] A= 000an100an1010an2001a1 ,b= 0001
则称其为系统状态空间表达式的能控标准型。在此我们不加以证明,直接给出线性变化矩阵 ξ = P x \xi=Px ξ=Px中的 P P P
P = [ p 1 p 1 A ⋮ p 1 A n − 1 ] P=\left[ \begin{matrix} p_1 \\ p_1A \\ \vdots \\ p_1A^{n-1}\\ \end{matrix} \right] P= p1p1Ap1An1
式中, p 1 = [ 0 0 0 ⋯ 0 1 ] [ b A b A 2 b ⋯ A n − 1 b ] − 1 p_1=[0\quad0\quad0\cdots 0\quad 1][b\quad Ab \quad A^2b \quad \cdots \quad A^{n-1}b]^{-1} p1=[00001][bAbA2bAn1b]1

能观标准型

若系统的状态空间经过线性变换可以变为:
A = [ 0 0 ⋯ 0 − a n 1 0 ⋯ 0 − a n − 1 0 1 ⋯ 0 − a n − 2 ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 ⋯ 1 − a 1 ] , c = [ 0 0 ⋮ 0 1 ] T A=\left[ \begin{matrix} 0 & 0 & \cdots & 0 & -a_n \\ 1 & 0 & \cdots & 0 &-a_{n-1} \\ 0 & 1& \cdots & 0 &-a_{n-2}\\ \vdots & \vdots & \ddots&\vdots & \vdots\\ 0 & 0 & \cdots &1 & -a_1\\ \end{matrix} \right], c=\left[ \begin{matrix} 0 \\ 0 \\ \vdots \\ 0\\ 1\\ \end{matrix} \right]^{T} A= 010000100001anan1an2a1 ,c= 0001 T
则称其为系统状态空间表达式的能观标准型。在此我们不加以证明,直接给出线性变化矩阵 ξ = P x \xi=Px ξ=Px中的 P P P
T = [ T 1 A T 1 ⋮ A n − 1 T 1 ] T T=\left[ \begin{matrix} T_1 \\ AT_1 \\ \vdots \\ A^{n-1}T_1\\ \end{matrix} \right]^{T} T= T1AT1An1T1 T
式中, T 1 = ( [ c c A c A 2 ⋯ c A n − 1 ] − 1 ) T ( [ 0 0 0 ⋯ 0 1 ] ) T T_1=([c\quad cA \quad cA^2 \quad \cdots \quad cA^{n-1}]^{-1})^{T}([0\quad0\quad0\cdots 0\quad 1])^T T1=([ccAcA2cAn1]1)T([00001])T

可镇定性与可检测性

定义3 :对于线性定常系统,进行状态反馈 u = F x u=Fx u=Fx,r若闭环系统对任意的初始状态 x ( 0 ) = x 0 x(0)=x_0 x(0)=x0有满足
lim ⁡ t → + ∞ x ( t ) = 0 \lim_{t \to +\infty} x(t)=0 t+limx(t)=0
的解 x ( t ) = e ( A + B F ) t x 0 x(t)=e^{(A+BF)t}x_0 x(t)=e(A+BF)tx0则系统是可镇定的,即 ( A , B ) (A,B) (A,B)是可镇定的。
定理6:下述关于系统可镇定性的三个条件是等价的

  1. ( A , B ) (A,B) (A,B)是可镇定的
  2. 存在使 A + B F A+BF A+BF渐近稳定的矩阵 F F F
  3. 对于任意的 R e ( s ) ≥ 0 Re(s)\geq0 Re(s)0 r a n k [ s I − A B ] = n rank[sI-A \quad B]=n rank[sIAB]=n

定义4:可镇定性与可检测性具有对偶关系,如果 ( A T , C T ) (A^T,C^T) (AT,CT)为可镇定的,则系统使可检测的。
同样存在三个等价条件:

  1. ( C , A ) (C,A) (C,A)是可镇定的
  2. 存在使 A + H C A+HC A+HC渐近稳定的矩阵 H H H
  3. 对于任意的 R e ( s ) ≥ 0 Re(s)\geq0 Re(s)0 r a n k [ s I − A C ] … … T = n rank[sI-A \quad C]……T=n rank[sIAC]……T=n
  • 8
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
鲁棒控制是一种通过对系统参数变化和外部扰动的鲁棒设计,来实现对控制系统稳定能的保证的控制方法。在Simulink中,可以使用鲁棒控制工具箱来设计和分析鲁棒控制系统。 Simulink鲁棒控制工具箱提供了多种用于鲁棒控制设计的函数和工具。使用这些函数和工具,可以对模型进行频域和时域的分析,并且可以通过添加反馈控制器来改善系统的稳定能。鲁棒控制工具箱还提供了用于鲁棒分析和设计的块集合,这些块可以直接在Simulink模型中使用。 在Simulink中进行鲁棒控制设计的基本步骤如下: 1. 构建系统模型:使用Simulink建立待控制的系统模型,包括系统的传递函数或状态空间表示。 2. 鲁棒分析:在Simulink中使用鲁棒控制工具箱的函数和块,对系统进行鲁棒分析。可以使用频域分析和时域分析等方法,评估系统对参数变化和外部扰动的鲁棒能。 3. 控制器设计:根据系统的鲁棒分析结果,设计合适的控制器。可以选择经典控制方法,如PID控制器,也可以使用先进的鲁棒控制设计方法,如H-infinity控制。 4. 系统仿真:将控制器添加到Simulink模型中,对系统进行仿真。通过分析仿真结果,评估系统的稳定能,如果需要,进行调整和改进。 总之,Simulink提供了丰富的工具和函数,可以支持鲁棒控制设计的建模、分析和仿真。使用Simulink进行鲁棒控制设计,可以帮助工程师更有效地设计和优化控制系统,提高系统的鲁棒和稳定

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值