广义预测控制1-CARIMA方程

文章详细阐述了如何通过一个具体的连续传递函数例子,进行离散化处理,采用100s的采样时间,利用MATLAB的c2d函数将系统转换为离散形式,进一步得到CARIMA模型的步骤。这一过程对于理解和应用时间序列分析中的CARIMA模型至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本节主要介绍根据系统的连续传递函数如何推导得到CARIMA模型

 选取如下的一个传递函数作为例子

g =
 
       -3 s + 0.3
  --------------------
  9000 s^2 + 910 s + 1

离散化的过程如下

num=[-3 0.3];
den = [9000 910 1];

取采样时间为100s

g=tf(num,den)
ts = 100
g2 = c2d(g,ts,'z')
[num1, den1] = tfdata(g2,'v');
disp(num1);
disp(den1);

根据离散传递函数 即可得到CARIMA方程

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心本忧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值