windows下安装tensorrt(python调用)

本文档详细介绍了在Windows系统中安装TensorRT的步骤,包括选择合适的TensorRT、CUDA版本,以及处理可能出现的dll文件缺失问题。通过Python接口调用TensorRT,并提供了安装所需的whl文件和解决依赖的dll文件。此外,还分享了如何使用VS2019验证TensorRT安装的正确性,以及PyTorch和TorchVision的下载链接。
摘要由CSDN通过智能技术生成

TensorRT是可以在NVIDIA各种GPU硬件平台下运行的一个C++推理框架。我们利用Pytorch、TF或者其他框架训练好的模型,可以转化为TensorRT的格式,然后利用TensorRT推理引擎去运行我们这个模型,从而提升这个模型在英伟达GPU上运行的速度。速度提升的比例是比较可观的。
————————————————

0.根据我这边是踩坑实验结论

1.在windows是使用tensorrt加速还要通过python进行调用的话,需要选择tensorrt (windows版本) 8或以上的版本,然后才能在python里面如下进行调用

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import tensorrt as trt
if __name__ == "__main__":
    print(trt.__version__)
    print("hello trt!!")

2.python版本用的话可以不需要使用vs2019进行编译,vs2019只是通过运行tensorrt加速模块里面的手写数字的例子进行验证用的

一.下载tensorrt安装包并移动文件

官网的tensorrt连接
注意:EA 版本代表抢先体验(在实际发布之前)。GA 代表一般可用性。GA 是稳定版,经过全面测试。
所以我们建议您使用 TensorRT 最新版本的 GA 版本。如下是cuda11.3对应的
在这里插入图片描述

cuda10.0

我上传的0积分tensorrt windwos下的8.2版本cuda内的添加文件下载
我上传的0积分tensorrt windwos下的8.2版本python3.7whl文件下载
————————————————————————————————

cuda11.3

我上传的0积分tensorrt windwos下的8.4版本全

官方链接

--------------------------------------------------

然后将下载好后的部分,
如我这的TensorRT-8.2.0.6文件夹中的include文件移动到你的CUDA文件夹下的include,我这是(C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0),

如我这的TensorRT-8.2.0.6文件夹中的lib中的dll与lib文件分别放到CUDA下的bin与lib\x64文件夹中

否则按照别的链接里面说的为其添加环境变量
在这里插入图片描述

在这里插入图片描述

二.pip安装包内的whl文件

一共需要安装4个whl文件如下箭头的文件夹里面,安装方式如下,注意安装tensorrt的whl的时候,要根据你python环境来,我这里是3.7版本,所有就选的cp37

pip install tensorrt-8.2.0.6-cp37-none-win_amd64.whl

在这里插入图片描述
在这里插入图片描述

三.运行例子

如果你运气好的话就可以成功运行下面的了,也就代表tensorrt安装好了

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import tensorrt as trt
if __name__ == "__main__":
    print(trt.__version__)
    print("hello trt!!")

然而我运气比较差,报错说缺了一堆dll文件,具体在bin文件夹下

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\bin

如下我直接该改了加载dll文件的那部分代码(报错后你点击报错点可以直接跳过去的哈,不要傻乎乎的按照我下面的路径翻),打印了下加载的那个部分,然后缺什么dll补什么dll进bin文件夹里面…
bin的路径如下

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\bin

在这里插入图片描述
以下图片内容就是我上传的dll文件,下载自取,缺啥补啥
我打包的dll文件
——————————————————————————
dll文件缺失查找网址
在这里插入图片描述
在这里插入图片描述

补VS2019验证

上面成功了也可以不验证,不过如果还是出错搭建个这个环境验证下也行

参考这个链接vs2019运行内部数字识别例子的流程

成功如下效果在这里插入图片描述
注意vs2019里面配置弄对,不然 右击生成不出来
在这里插入图片描述

补2 pytorch和torchvision各版本下载地址:

pytorch和torchvision各版本下载地址传送门

pytorch版本对应关系查看网址

cuda11.3下torch与torchvison版本选择

参考链接:

TensorRT(一)Windows+Anaconda配置TensorRT环境 (Python版 )

linux下一键安装环境教学视频

### 回答1: TensorRT是NVIDIA推出的深度学习推理引擎,可以在GPU上高效地运行深度学习模型。TensorRT支持Windows平台,可以通过以下步骤安装: 1. 安装CUDA和cuDNN:TensorRT需要依赖CUDA和cuDNN,需要先安装它们。可以从NVIDIA官网下载对应版本的CUDA和cuDNN,并按照官方文档进行安装。 2. 下载TensorRT:可以从NVIDIA官网下载对应版本的TensorRT,下载完成后解压到指定目录。 3. 安装TensorRT Python API:TensorRT提供了Python API,可以通过pip安装。打开命令行窗口,输入以下命令: ``` pip install tensorrt ``` 4. 安装TensorRT UFF Parser:如果需要使用UFF格式的模型,需要安装TensorRT UFF Parser。可以通过pip安装。打开命令行窗口,输入以下命令: ``` pip install uff ``` 安装完成后,就可以在Windows平台上使用TensorRT了。 ### 回答2: TensorRT是NVIDIA推出的一个高效的深度神经网络推理引擎,可以大幅提升神经网络在GPU上的运行速度。TensorRT支持多种深度学习框架,如TensorFlow、Caffe和PyTorch等。在本文中,我们将探讨如何在Windows环境中使用Python安装TensorRT。 1. 准备工作 在安装TensorRT之前,需要先安装CUDA和cuDNN。TensorRT依赖于CUDA和cuDNN,并且需要使用与您的GPU型号相对应版本的CUDA和cuDNN。 首先,下载并安装适合您GPU的CUDA软件包。然后,下载cuDNN库并将其解压缩到CUDA的安装目录中。例如,如果您的CUDA安装在C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1路径下,那么解压cuDNN库后应该将库文件放在C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\路径下。 2. 下载TensorRT 在完成CUDA和cuDNN的安装后,就可以下载TensorRT了。首先,进入NVIDIA官方网站(https://developer.nvidia.com/nvidia-tensorrt-download)下载TensorRT软件包。下载完成后,解压缩到您喜欢的目录中。例如,将TensorRT解压缩到C:\TensorRT路径下。 3. 配置环境变量 接下来,要将TensorRT的路径添加到环境变量中。在Windows环境中,打开“控制面板”->“系统和安全”->“系统”,然后点击“高级系统设置”->“环境变量”按钮。在“系统变量”中,找到“Path”变量并点击“编辑”按钮。在“变量值”框中添加TensorRT的bin和lib路径,例如:C:\TensorRT\bin;C:\TensorRT\lib; 4. 安装Python包 在安装Python之前,需要将Anaconda环境添加到环境变量中。如果您没有安装Anaconda环境,请先下载并安装Anaconda。在Windows环境中,打开“控制面板”->“系统和安全”->“系统”,然后点击“高级系统设置”->“环境变量”按钮。在“用户变量”中,找到“Path”变量并点击“编辑”按钮。在“变量值”框中添加Anaconda的路径,例如:C:\ProgramData\Anaconda3\Scripts;C:\ProgramData\Anaconda3\; 然后,通过pip命令安装TensorRT Python包。在Anaconda命令行窗口中,输入以下命令: pip install tensorrt 5. 测试安装 完成TensorRT Python包的安装后,可以使用Python脚本测试安装是否成功。创建一个新的Python脚本,并将以下代码复制并粘贴: import tensorrt as trt print(trt.__version__) 保存脚本后运行,如果输出正确的TensorRT版本号,则表明安装成功。可以使用TensorRT创建和优化神经网络模型了。 综上所述,TensorRTWindows环境中的安装步骤如上所述。安装前需要确认CUDA和cuDNN已成功安装安装时需要添加环境变量并使用pip工具安装TensorRT Python包。 ### 回答3: TensorRT是一个可用于高性能深度学习推理的软件库,可以在GPU上进行加速。对于Windows系统和Python用户来说,安装TensorRT相对来说比较简单,但也需要一定的操作步骤,下面将详细介绍如何安装TensorRT。 首先,需要在NVIDIA官网上下载TensorRT安装程序,这里提供的是TensorRT 5.1.5版本的下载地址:https://developer.nvidia.com/nvidia-tensorrt-5x-download,选择对应的Windows版本,下载后进行安装。 其次,安装完成后需要配置TensorRT环境变量,将TensorRT的bin目录添加到PATH环境变量中,这样就能够在命令行中使用TensorRT相关命令了。同样需要将TensorRT的include和lib目录添加到对应的环境变量中,以便在调用TensorRT库时能够正确编译。 接着,安装TensorRTPython包,可以通过pip安装,打开命令行直接输入以下指令: ``` pip install tensorrt ``` 安装完成后,调用TensorRT就可以在Python中使用了。此外,还需要安装对应的TensorFlow和Python版本,以及NVIDIA的CUDA和cuDNN软件包,以便与TensorRT一起使用。 最后,验证TensorRT安装是否成功。在Python中导入TensorRT库,进行简单的模型推理测试。如果能够成功进行推理操作,那么就说明TensorRT安装已经成功了。 总之,TensorRTWindows系统下的安装还是比较简单的,只需要按照上述步骤进行操作即可。当然,安装过程中也有可能会遇到一些问题,比如环境变量没有设置正确等,这时就需要仔细查看错误信息进行调整了。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员进化不脱发!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值