一、TensorRT介绍
NVIDIA TensorRT是一个由NVIDIA公司开发的用于深度学习推理的高性能SDK。它专门设计用于在NVIDIA GPU上进行高效的神经网络推理,能够大幅度提升深度学习模型的推理速度和效率。
TensorRT的主要特点包括:
-
模型优化:TensorRT通过层融合、精度校准、动态形状等技术优化模型,减少推理时的计算量和内存占用。
-
多精度推理:支持多种精度推理,包括FP32、FP16、INT8等,以平衡性能和精度。
-
跨框架兼容性:TensorRT提供了解析器来支持多种深度学习框架,如TensorFlow、PyTorch、Caffe等,使得这些框架训练的模型可以方便地转换为TensorRT格式。
-
低延迟和高吞吐量:TensorRT针对NVIDIA GPU进行了特别的优化,以实现低延迟和高吞吐量的推理。
-
灵活性和可扩展性:TensorRT提供了C++和Python API,允许开发者根据需要进行高度定制和优化。
总的来说,使用TensorRT就是为了榨干GPU性能,实现高效的推理计算。
二、TensorRT下载
下载TensorRT前需要准备CUDA环境,本文使用的CUDA环境为CUDA12.1。
进入NVIDIA的TensorRT官网: https://developer.nvidia.com/tensorrt,下载前需要登录NVID