1.torch.cuda.FloatTensor 与 torch.FloatTensor
Pytorch中的tensor又包括CPU上的数据类型和GPU上的数据类型,一般GPU上的Tensor是CPU上的Tensor加cuda()函数得到。
一般系统默认是torch.FloatTensor类型(即CPU上的数据类型)。例如data = torch.Tensor(2,3)是一个2*3的张量,类型为FloatTensor;
data.cuda()就转换为GPU的张量类型,torch.cuda.FloatTensor类型。
2.torch.Tensor与torch.tensor
torch.Tensor:torch.Tensor()是Python类,更明确的说,是默认张量类型torch.FloatTensor()的别名,torch.Tensor([1,2]) 会调用Tensor类的构造函数__init__,生成单精度浮点类型的张量。
torch.tensor():torch.tensor()仅仅是Python的函数,函数原型是:
torch.tensor(data, dtype=None, device=None, requires_grad=False)
中data可以是:list, tuple, array, scalar等类型。
torch.tensor()可以从data中的数据部分做拷贝(而不是直接引用),根据原始数据类型生成相应的torch.LongTensor,torch.FloatTensor,torch.DoubleTensor。