bpd(bits per dimension)是什么意思?

文章讲述了bpd在生成模型性能评估中的重要性,它是衡量模型压缩和重建数据效率的指标。通过计算负对数似然和KL散度,然后转换为bits,便于模型间比较。文中提供了计算bpd的具体步骤和normal_kl和mean_flat函数的运用示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

是什么? 

"bpd" 表示 "bits per dimension",即每个维度的比特数。这是一个常用于评估生成模型,尤其是在图像和声音处理领域的性能指标。它测量的是模型重建数据时每个维度所需的信息量,用比特(bits)来衡量。

当评估生成模型的性能时,"bpd" 用于量化模型生成数据的质量。较低的 "bpd" 值意味着模型在每个数据维度上使用更少的比特来准确表示数据,这通常表明模型有更好的性能,因为它能以更高的效率压缩和重建数据。

 如何操作?

"bpd" 一般是通过计算模型输出的负对数似然(NLLs)或KL散度(KLs)loss,然后将结果求平均,再除以 log2 来得到的,这样做的目的是将单位从 "nats" 转换为 "bits",使得结果更容易与其他模型进行比较。

  1. 求两个分布之间的loss(利用normal_kl)
  2. 求loss的平均(mean_flat)
  3. 除以log2(/np.lpg(2.0))
# 求KL loss
kl = normal_kl(true_mean, true_log_variance_clipped, out["mean"], out["log_variance"])

# bpb操作
kl = mean_flat(kl) / np.log(2.0)

以自然对数 e 为底数的单位是 "nats",而以 2 为底的对数的单位是 "bits"。

通过除以 log2,可以完成“nats” --> "bits"转换,从而使得评估结果更直观、易于与其他模型进行对比。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Pengsen Ma

太谢谢了

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值