是什么?
"bpd" 表示 "bits per dimension",即每个维度的比特数。这是一个常用于评估生成模型,尤其是在图像和声音处理领域的性能指标。它测量的是模型重建数据时每个维度所需的信息量,用比特(bits)来衡量。
当评估生成模型的性能时,"bpd" 用于量化模型生成数据的质量。较低的 "bpd" 值意味着模型在每个数据维度上使用更少的比特来准确表示数据,这通常表明模型有更好的性能,因为它能以更高的效率压缩和重建数据。
如何操作?
"bpd" 一般是通过计算模型输出的负对数似然(NLLs)或KL散度(KLs)loss,然后将结果求平均,再除以 log2
来得到的,这样做的目的是将单位从 "nats" 转换为 "bits",使得结果更容易与其他模型进行比较。
- 求两个分布之间的loss(利用normal_kl)
- 求loss的平均(mean_flat)
- 除以log2(/np.lpg(2.0))
# 求KL loss
kl = normal_kl(true_mean, true_log_variance_clipped, out["mean"], out["log_variance"])
# bpb操作
kl = mean_flat(kl) / np.log(2.0)
以自然对数 e 为底数的单位是 "nats",而以 2 为底的对数的单位是 "bits"。
通过除以 log2
,可以完成“nats” --> "bits"转换,从而使得评估结果更直观、易于与其他模型进行对比。