同时拥有独显和核显,怎么让应用程序选择使用哪个GPU?

看你现在使用的是核显还是独显 

勾选上GPU引擎选项,后面便会标识你所使用的是哪种显卡,如果是独立显卡,就可以免去后续的操作;如果不是,那么请继续接下来的操作。

将你需要使用独显的程序换成gpu1(独显)

将你需要的应用程序选择为高性能

如果你不知道你的app在什么启动位置,可以等启动以后,右键该应用程序,然后属性查看

https://zhuanlan.zhihu.com/p/621118440?utm_campaign=shareopn&utm_medium=social&utm_psn=1818503072625856512&utm_source=wechat_session

Python中运行代码并利用CUDA(NVIDIA的计算统一设备架构)同时使用(Integrated Graphics)独显(Discrete Graphics)的GPU,通常涉及到NVIDIA的深度学习框架如PyTorch或TensorFlow。为了做到这一点,你需要配置CUDAcuDNN(CUDA的深度学习库)以支持多GPU环境。 首先,确保你的系统已经安装了CUDA对应版本的cuDNN。对于两个GPU(一个集成一个卡),你需要: 1. **硬件支持**:确认你的系统有双GPU支持,并且独显都连接到主板上并且工作正常。 2. **驱动程序**:安装并更新NVIDIA GPU的驱动程序,这会管理卡资源。 3. **环境变量设置**: - 更新环境变量`LD_LIBRARY_PATH`,使得系统能够找到CUDA库cuDNN。 - 在`.bashrc`或`.zshrc`文件中添加类似下面的内容: ```bash export CUDA_HOME=/path/to/cuda export PATH=$PATH:$CUDA_HOME/bin export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CUDA_HOME/lib64 ``` 4. **启用CUDA多GPU**: - 对于PyTorch,使用`torch.cuda.set_device()`指定设备索引,例如: ```python import torch device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # 如果你想切换到独显: torch.cuda.set_device(1) ``` - 对于TensorFlow,需要导入`tf.config.list_physical_devices()`来选择设备: ```python import tensorflow as tf gpus = tf.config.list_physical_devices('GPU') if gpus: try: for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) logical_gpus = tf.config.list_logical_devices('GPU') except RuntimeError as e: print(e) # 切换到独显: tf.config.set_visible_devices(gpus[1], 'GPU') ``` 5. **分配任务**: - 根据需要,你可以将不同的计算任务分配给不同的GPU。比如,在训练模型时,可以分批处理数据,一部分在上,另一部分在独显上。 请注意,不是所有应用程序都能无缝地在两个GPU之间负载均衡,有些应用可能会优先使用特定的GPU。此外,由于性能较低,可能不适合进行大量计算密集型的任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Pengsen Ma

太谢谢了

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值