multi-task

新手第一次接触multi-task,记录一下自己的学习解决过程。文中引用较多,感谢各位大神的讲解。

在一个端到端训练的网络中,如果最终的loss = aloss1+bloss2+c*loss3…,对于a,b,c这些超参的选择,有没有什么方法?

链接:https://www.zhihu.com/question/375794498

为什么把多个相关的任务放在一起学习,可以提高学习的效果?

ref:
https://www.codenong.com/cs106148671/

(1) 多人相关任务放在一起学习,有相关的部分,但也有不相关的部分。当学习一个任务(Main task)时,与该任务不相关的部分,在学习过程中相当于是噪声,因此,引入噪声可以提高学习的泛化(generalization)效果。

(2) 单任务学习时,梯度的反向传播倾向于陷入局部极小值。多任务学习中不同任务的局部极小值处于不同的位置,通过相互作用,可以帮助隐含层逃离局部极小值。

(3) 添加的任务可以改变权值更新的动态特性,可能使网络更适合多任务学习。比如,多任务并行学习,提升了浅层共享层(shared representation)的学习速率,可能,较大的学习速率提升了学习效果。

(4) 多个任务在浅层共享表示,可能削弱了网络的能力,降低网络过拟合,提升了泛化效果。

还有很多潜在的解释,为什么多任务并行学习可以提升学习效果(performance)。多任务学习有效,是因为它是建立在多个相关的,具有共享表示(shared representation)的任务基础之上的,因此,需要定义一下,什么样的任务之间是相关的。

一、

从预测不确定性的角度引入Bayesian框架,根据各个loss分量当前的大小自动设定其权重。有代表性的工作参见Alex Kendall等人的CVPR2018文章 Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics,https://arxiv.org/abs/1705.07115。文章的二作Yarin Gal是Zoubin Ghahramani的高徒,近几年结合Bayesian思想和深度学习做了很多solid的工作。

大佬分型的一些有趣的研究视角,文章还未深读,但是评论区似乎都说不太work.

二、看作多目标优化问题

将多任务学习看做多目标优化,将问题转化为求取Pareto最优解(从一种分配状态到另一种状态的变化中,在没有使任何人境况变坏的前提下,使得至少一个人变得更好,这就是帕累托改进或帕累托最优化)。
构建所有loss的Pareto,以一次训练的超低代价得到多种超参组合对应的结果。有代表性的工作参见Intel在2018年NeurIPS(对,就是那个刚改了名字的机器学习顶会)发表的Multi-Task Learning as Multi-Objective Optimization,https://papers.nips.cc/paper/7334-multi-task-learning-as-multi-objective-optimization
可参考https://blog.csdn.net/icylling/article/details/86249462

三、用不确定性对损失加权

参考链接:https://blog.csdn.net/cv_family_z/article/details/78749992

多任务学习中每个任务的最优权值依赖于调节尺度、任务的噪声幅值。
在这里插入图片描述

在这里插入图片描述

  • 这篇用的人比较多,准备加到我的任务中试一下

四、基于梯度更新

参考链接:
https://arxiv.org/abs/1711.02257v4

多任务学习中的不平衡实际上是各任务训练梯度的不平衡,因此论文关注各损失函数权重的梯度,利用梯度更新公式动态更新权重ω。即ω(t+1)=ω(t)+λβ(t)。由于目的是平衡各任务的训练梯度,所以式中β(t)是各任务梯度对ω的导数,λ沿用全局神经网络的学习率,为此设计了一种梯度损失(Grad Loss)

五、focal loss自动调节参数

  • 感觉目的是同时将多个任务学习好,但是我两个任务学习的都还行。但是acc和只只学一个的表现相近,似乎不太适合我的问题。但这个方法看起来也是比较好的。

参考链接:
https://www.zhihu.com/question/375794498/answer/1056695768

Focal loss 会根据每个task的表现帮你自动调整这些参数的。我们的做法一般是先分几个stage 训练。stage 0 : task 0, stage 1: task 0 and 1. 以此类推。 在stage 1以后都用的是focal loss。
具体来说:
首先对于每个 Task,你有个 Loss Function,以及一个映射到 [0, 1] 的 KPI (key performance indicator) 。比如对于分类任务, Loss function 可以是 cross entropy loss,KPI 可以是 Accuracy 或者 Average Precision。对于 regression 来说需要将 IOU 之类的归一化到 [0, 1] 之间。KPI 越高表示这个任务表现越好。对于每个进来的 batch,每个Task_i 有个 loss_i。 每个Task i 还有个不同的 KPI: k_i。那根据 Focal loss 的定义,FL(k_i, gamma_i) = -((1 - k_i)^gamma_i) * log(k_i)。一般来说我们gamma 取 2。于是对于这个 batch 来说,整个 loss = sum(FL(k_i, gamma_i) * loss_i) 在直观上说,这个 FL,当一个任务的 KPI 接近 0 的时候会趋于无限大,使得你的 loss 完全被那个表现不好的 task 给 dominate。这样你的back prop 就会让所有的权重根据那个kpi 不好的任务调整。当一个任务表现特别好 KPI 接近 1 的时候,FL 就会是0,在整个 loss 里的比重也会变得很小。当然根据学习的速率不同有可能一开始学的不好的task后面反超其他task。 http://svl.stanford.edu/assets/papers/guo2018focus.pdf 这篇文章里讲了如何像momentum 一样的逐渐更新 KPI。由于整个 loss 里现在也要对 KPI 求导,所以文章里还有一些对于 KPI 求导的推导。当然我们也说了,KPI 接近 0 时,Loss 会变得很大,所以一开始训练的时候不要用focal loss,要确保网络的权重更新到一定时候再加入 focal loss。

六、别人做的一些实验

  • 1.网络结构是否需要调整

参考链接:https://www.zhihu.com/question/375794498/answer/1077922077

如这个MTCNN中的ONet,它回归了包括score、bbox、landmarks,我在用pytorch复现的时候,出现一些有意思的情况,就是将landmarks这条任务冻结后(即 ),发现ONet的性能得到了巨大的提升。能超越原始版本的性能。但是加上landmarks任务后( )就会对cls_loss造成影响,这就是一个矛盾的现象。而且和a、b、c对应的大小有很大关系。当设置成( )的时候关键点的精度真的是惨不忍睹,几乎没法用。当设置成( )的时候,loss到了同样一个数量级,landmarks的精度确实是上去了,但是score却不怎么让人满意。如果产生了这种现象,就证明了这个网络结构在设计的时候出现了一些缺陷,需要去修改backbone之后的multi-task分支,让两者的相关性尽量减小。或者是ONet就不去做关键点,而是选择单独的一个网络去做关键点的预测(比如追加一个LNet)。box的回归并不是特别受关键点影响,大部分情况box和landmarks是正向促进的,影响程度可以看做和score是一致的,box的精度即便下降了5%,它还是能框得住目标,因此不用太在意。上面这个实验意在说明,要存在就好的loss权重组合,那么你的网络结构就必须设计的足够好。不然你可能还需要通过上述的实验就验证你的网络结构。从多种策略的设计上去解决这中loss不均衡造成的困扰。

推荐阅读https://arxiv.org/abs/1810.04002

  • 2.训练过程

  • 先冻结SSD网络,然后训练segmentation分支,到收敛

  • 再冻结segmentation分支进行SSD部分的训练,到收敛

  • 再将整个网络解冻训练到收敛,能达到比较好的效果

  • Task1与Task2交替训练

七、比较简单暴力的方法

  1. 调整为同一量级,然后根据结果微调。
  2. 这个系数的选择可以认为是一种先验,认为重要的loss项可以加大系数。
    更多时候需要验证集来调整超参数,不妨让 a+b+c=1 ,使用 grid search 来查看验证集的 loss 在什么情况下最小。

八 一些训练的tips

参考:
https://www.jiqizhixin.com/articles/2019-02-16

1.调整学习率
学习率是最重要的超参数之一。
对于某一个任务 A 而言,存在一个特别适合的学习速率,而对于另一个任务 B,则有不同的适合学习速率。如果选择较高的学习速率,可能在某个任务上出现神经元死亡(由于大的负梯度,导致 Relu 函数永久关闭,即 dying ReLU),而使用较低的学习速率,则会导致其他任务收敛缓慢。应该怎么做呢?我们可以在各个「头部」(见上图,即各任务的子网络)分别调节各自的学习速率,而在共享网络部分,使用另一个学习速率。

在tensorflow中:

optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss)
all_variables = shared_vars + a_vars + b_vars
all_gradients = tf.gradients(loss, all_variables)

shared_subnet_gradients = all_gradients[:len(shared_vars)]
a_gradients = all_gradients[len(shared_vars):len(shared_vars + a_vars)]
b_gradients = all_gradients[len(shared_vars + a_vars):]

shared_subnet_optimizer = tf.train.AdamOptimizer(shared_learning_rate)
a_optimizer = tf.train.AdamOptimizer(a_learning_rate)
b_optimizer = tf.train.AdamOptimizer(b_learning_rate)

train_shared_op = shared_subnet_optimizer.apply_gradients(zip(shared_subnet_gradients, shared_vars))
train_a_op = a_optimizer.apply_gradients(zip(a_gradients, a_vars))
train_b_op = b_optimizer.apply_gradients(zip(b_gradients, b_vars))

train_op = tf.group(train_shared_op, train_a_op, train_b_op) 

2。将估计作为特征(冻结)
某一个任务的估计(estimate)作为另一个任务的特征

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值