Multi-Task Learning的几篇综述文章

本文介绍了多任务学习(MTL)的几篇综述文章,包括Ruder的深度学习MTL概述,强调了Hard sharing和Soft sharing两种策略,以及MTL的多种机制。Zhang和Yang的综述讨论了MTL的特征学习、低秩方法、任务聚类、任务关系学习等方法,并与其他机器学习方法结合。Thung和Wee的综述给出了MTL的定义,并按输入/输出和正则化方法分类。所有文章都强调了MTL在利用任务间关系改善泛化能力上的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

下面分别介绍多任务学习(MTL)的三篇综述文章。

Ruder S, “An Overview of Multi-Task Learning in Deep Neural Networks”, arXiv 1706.05098, June 2017

在这里插入图片描述
深度学习方面MTL总结:
按照隐层,MTL基本分两类:Hard sharing 和 Soft sharing

在这里插入图片描述
Hard sharing在多任务之间共享隐层,降低over fitting的风险。“The more tasks we are learning simultaneously, the more our model has to find a representation that captures all of the tasks and the less is our chance of overfitting on our original task”
在这里插入图片描述
Soft sharing各任务之间有自己的模型和参数,主要靠regularization鼓励任务之间的模型参数相似。

MTL的机制有几点:
· Implicit data augmentation 数据增强
· Attention focusing 注意
· Eavesdropping 窃听
· Representation bias 表示偏向
· Regularization 正则化

非神经网络模型中的MTL,主要有两种:
· Block-sparse regularization:enforcing sparsity across tasks through norm regularization
· Learning task relationships:m

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值