Loss Functions
创建一个标准,用于测量输入x和目标y中每个元素之间的平均绝对误差(MAE) | |
创建一个标准,用于测量输入x和目标y中每个元素之间的均方误差(平方L2范数) | |
计算输入和目标之间的交叉熵损失。 | |
连接主义时间分类损失CTCLoss。 | |
负对数似然损失。 | |
目标泊松分布的负对数似然损失。 | |
高斯负对数似然损失。 | |
Kullback-Leibler散度损失测度 | |
创建衡量目标和输入概率之间的二值交叉熵的标准: | |
将Sigmoid层和BCELoss融合一起. | |
创建一个标准,用于测量给定输入x1、x2、两个1D小批量张量和标签1D小批量张量y(包含1或-1)的损失。 | |
测量给定输入张量x和标签张量y(包含1或-1)的损失。 | |
创建一个标准,用于优化输入x(2D小批量张量)和输出y(目标索引的2D张量)之间的多分类铰链损失(margin_based损失)。 | |
创建一个标准,如果绝对元素误差低于增量,则使用平方项,否则使用增量缩放的L1项。 | |
创建一个标准,如果绝对元素误差低于β,则使用平方项,否则使用L1项。 | |
创建一个标准,用于优化输入张量x和目标张量y(包含1或-1)之间的两类分类逻辑损失。 | |
在输入x和目标y的大小(N,C)之间,根据最大熵去优化多标签一对多损失 | |
创建一个标准,用于测量给定输入张量x1 , x2 以及一个值为1或-1的张量标签y的损失。用余弦距离测量两个输入是否相似,用于学习非线性嵌入或半监督学习。 | |
创建一个标准,用于优化输入x(2D小批量张量)和输出y(目标索引的1D张量)之间的多类分类铰链损失0≤Y≤x.size(1)−1): | |
在给定输入张量x1、x2、x3和大于0的裕度的情况下测量tripletloss。 | |
创建一个标准,用于测量给定输入张量a、p和n(分别代表锚、正和负示例)的tripletloss,以及一个非负实值函数(“距离函数”),用于计算锚和正示例(“正距离”)以及锚和负示例(“负距离”)之间的关系。 |