PyTorch-1.10(十)--torch.nn的损失函数

Loss Functions

nn.L1Loss

创建一个标准,用于测量输入x和目标y中每个元素之间的平均绝对误差(MAE)

nn.MSELoss

创建一个标准,用于测量输入x和目标y中每个元素之间的均方误差(平方L2范数)

nn.CrossEntropyLoss

计算输入和目标之间的交叉熵损失。

nn.CTCLoss

连接主义时间分类损失CTCLoss。

nn.NLLLoss

负对数似然损失。

nn.PoissonNLLLoss

目标泊松分布的负对数似然损失。

nn.GaussianNLLLoss

高斯负对数似然损失。

nn.KLDivLoss

Kullback-Leibler散度损失测度

nn.BCELoss

创建衡量目标和输入概率之间的二值交叉熵的标准:

nn.BCEWithLogitsLoss

将Sigmoid层和BCELoss融合一起.

nn.MarginRankingLoss

创建一个标准,用于测量给定输入x1、x2、两个1D小批量张量和标签1D小批量张量y(包含1或-1)的损失。

nn.HingeEmbeddingLoss

测量给定输入张量x和标签张量y(包含1或-1)的损失。

nn.MultiLabelMarginLoss

创建一个标准,用于优化输入x(2D小批量张量)和输出y(目标索引的2D张量)之间的多分类铰链损失(margin_based损失)。

nn.HuberLoss

创建一个标准,如果绝对元素误差低于增量,则使用平方项,否则使用增量缩放的L1项。

nn.SmoothL1Loss

创建一个标准,如果绝对元素误差低于β,则使用平方项,否则使用L1项。

nn.SoftMarginLoss

创建一个标准,用于优化输入张量x和目标张量y(包含1或-1)之间的两类分类逻辑损失。

nn.MultiLabelSoftMarginLoss

在输入x和目标y的大小(N,C)之间,根据最大熵去优化多标签一对多损失

nn.CosineEmbeddingLoss

创建一个标准,用于测量给定输入张量x1​  , x2​ 以及一个值为1或-1的张量标签y的损失。用余弦距离测量两个输入是否相似,用于学习非线性嵌入或半监督学习。

nn.MultiMarginLoss

创建一个标准,用于优化输入x(2D小批量张量)和输出y(目标索引的1D张量)之间的多类分类铰链损失0≤Y≤x.size(1)−1):

nn.TripletMarginLoss

在给定输入张量x1、x2、x3和大于0的裕度的情况下测量tripletloss。

nn.TripletMarginWithDistanceLoss

创建一个标准,用于测量给定输入张量a、p和n(分别代表锚、正和负示例)的tripletloss,以及一个非负实值函数(“距离函数”),用于计算锚和正示例(“正距离”)以及锚和负示例(“负距离”)之间的关系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值