使用 MLLMU-Bench 保护多模态大模型中的隐私

文章介绍了“多模态大语言模型机器遗忘基准”(MLLMU-Bench),旨在解决多模态大语言模型(MLLMs)中关于隐私保护的问题。这些模型在大量网络数据上训练,可能会记忆和泄露个人的机密信息,从而引发法律和道德问题。虽然已有研究在单模态大语言模型(LLMs)中探讨了机器遗忘,但在多模态设置下仍然相对缺乏探索。MLLMU-Bench包括500个虚构档案和153个公众名人档案,每个档案配备14个定制的问答对,支持多模态(图像+文本)和单模态(文本)评估。研究发现,单模态遗忘算法在生成和填空任务上表现更佳,而多模态方法在多模态输入的分类任务上效果更好。这项工作为多模态机器遗忘的理解提供了新的基准和见解。
在这里插入图片描述

1 MLLMU-Bench基准

MLLMU-Bench是为了解决多模态大语言模型(MLLMs)在隐私保护中面临的机器遗忘问题而设计的,旨在为多模态机器遗忘研究提供标准化的评估框架。

· 数据集构建:

·基准包含500个虚构个人档案和153个公共名人档案,每个档案配有超过14个定制的问答对,问题涵盖了图像和文本的信息,确保能够全面评估模型在不同模态下的遗忘能力。

· 数据集分类:

·MLLMU-Bench将数据集分为多个部分,主要包括:

o遗忘集(Forget Set):用于评估机器遗忘算法的有效性,包含需要被遗忘的档案。

o保留

内容概要:本文详细探讨了双馈风力发电机(DFIG)在Simulink环境下的建模方法及其在不同风速条件下的电流与电压波形特征。首先介绍了DFIG的基本原理,即定子直接接入电网,转子通过双向变流器连接电网的特点。接着阐述了Simulink模型的具体搭建步骤,包括风力机模型、传动系统模型、DFIG本体模型和变流器模型的建立。文中强调了变流器控制算法的重要性,特别是在应对风速变化时,通过实时调整转子侧的电压和电流,确保电流和电压波形的良好特性。此外,文章还讨论了模型中的关键技术和挑战,如转子电流环控制策略、低电压穿越性能、直流母线电压脉动等问题,并提供了具体的解决方案和技术细节。最终,通过对故障工况的仿真测试,验证了所建模型的有效性和优越性。 适用人群:从事风力发电研究的技术人员、高校相关专业师生、对电力电子控制系统感兴趣的工程技术人员。 使用场景及目标:适用于希望深入了解DFIG工作原理、掌握Simulink建模技能的研究人员;旨在帮助读者理解DFIG在不同风速条件下的动态响应机制,为优化风力发电系统的控制策略提供理论依据和技术支持。 其他说明:文章不仅提供了详细的理论解释,还附有大量Matlab/Simulink代码片段,便于读者进行实践操作。同时,针对一些常见问题给出了实用的调试技巧,有助于提高仿真的准确性和可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值