MADDPG分析及其更新策略见解

本文介绍了多智能体深度确定性策略梯度(MADDPG)算法,作为DDPG在多智能体环境中的扩展,其核心思想是通过增强critic网络的输入信息来改善决策。MADDPG的特点是分布式的actor和集中式的critic,允许更好地处理多智能体环境中的交互。文章讨论了MADDPG的更新策略,以及在实践中加速收敛的技巧,并指出其在智能体数量增加时面临的挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引子

  深度强化学习可以分为两类:单智能体算法和多智能体算法,单智能体算法从DQN开始有policy gradient、actor critic、dpg、ppo、ddpg、sac等等,它们解决的是环境中存在一个智能体的情况(或者是多个智能体可以转化为一个智能体决策的情况),但是在某些环境(environment)下,似乎单智能体算法就有些心有余而力不足,例如足球比赛亦或是追逐游戏。如果依旧对每个agent采用单智能体算法会出现如下情况:在第 i i i个agent做出动作

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

iπ弟弟

如果可以的话,请杯咖啡吧!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值