湍动能耗散率ε输运方程的推导

一、脉动运动方程

脉动运动方程的推导可以参考博主的另一篇博文《雷诺方程、脉动运动方程及雷诺应力输运方程的推导》。为方便查看,现将脉动运动方程给出: ∂ u i ′ ∂ x i = 0 (1) \frac{\partial u_i'}{\partial x_i}=0 \tag{1} xiui=0(1) ∂ u i ′ ∂ t + < u k > ∂ u i ′ ∂ x k + u k ′ ∂ < u i > ∂ x k = − 1 ρ ∂ p ′ ∂ x i + ν ∂ 2 u i ′ ∂ x k ∂ x k − ∂ ∂ x k ( u i ′ u k ′ − < u i ′ u k ′ > ) (2) \frac{\partial u_i'}{\partial t}+ \left<u_k\right>\frac{\partial u_i'}{\partial x_k} + u_k'\frac{\partial \left<u_i\right>}{\partial x_k}=- \frac{1}{\rho}\frac{\partial p'}{\partial x_i}+ \nu \frac{\partial^2 u_i'}{\partial x_k\partial x_k} - \frac{\partial}{\partial x_k}\left(u_i'u_k'-\left<u_i'u_k'\right>\right)\tag{2} tui+ukxkui+ukxkui=ρ1xip+νxkxk2uixk(uiukuiuk)(2)

二、湍动能耗散率输运方程的推导

湍动能耗散率输运方程可以由脉动运动方程导出,即将式 ( 2 ) (2) (2) x l x_l xl微分,并乘上 2 ν ∂ u i ′ ∂ x l \begin{aligned} 2\nu\frac{\partial u'_i}{\partial x_l} \end{aligned} 2νxlui后取平均运算,便可以得到精确的湍动能耗散率输运方程(以区别于其模型方程)。这里先给出湍动能耗散率 ε \varepsilon ε的定义: ε = ν < ∂ u i ′ ∂ x k ∂ u i ′ ∂ x k > \begin{aligned} \varepsilon=\nu \left< \frac{\partial u'_i}{\partial x_k} \frac{\partial u'_i}{\partial x_k} \right> \end{aligned} ε=νxkuixkui其瞬时量可定义为 ε ′ = ν ( ∂ u i ′ ∂ x k ∂ u i ′ ∂ x k ) \begin{aligned} \varepsilon'= \nu \left( \frac{\partial u'_i}{\partial x_k} \frac{\partial u'_i}{\partial x_k} \right) \end{aligned} ε=ν(xkuixkui)则有 ε = < ε ′ > \varepsilon=\left< \varepsilon' \right> ε=ε
首先给出湍动能耗散率输运方程如下: ∂ ε ∂ t + < u k > ∂ ε ∂ x k = − 2 ν ∂ < u i > ∂ x k ( < ∂ u i ′ ∂ x l ∂ u k ′ ∂ x l > + < ∂ u l ′ ∂ x i ∂ u l ′ ∂ x k > ) − 2 ν ∂ 2 < u i > ∂ x k ∂ x l < u k ′ ∂ u i ′ ∂ x l > − 2 ν < ∂ u i ′ ∂ x k ∂ u i ′ ∂ x l ∂ u k ′ ∂ x l > − ∂ ∂ x k ( < u k ′ ε ′ > − ν ∂ ε ∂ x k ) − 2 ν 2 < ∂ 2 u i ′ ∂ x k x l ∂ 2 u i ′ ∂ x k x l > − 2 ν ρ ∂ ∂ x i < ∂ p ′ ∂ x l ∂ u i ′ ∂ x l > \begin{aligned} &\frac{\partial \varepsilon}{\partial t}+ \left<u_k\right>\frac{\partial \varepsilon}{\partial x_k}= -2\nu\frac{\partial \left<u_i\right>}{\partial x_k} \left( \left<\frac{\partial u'_i}{\partial x_l}\frac{\partial u'_k}{\partial x_l}\right>+ \left<\frac{\partial u'_l}{\partial x_i}\frac{\partial u'_l}{\partial x_k}\right> \right)- 2\nu\frac{\partial^2 \left<u_i\right>}{\partial x_k \partial x_l} \left<u'_k\frac{\partial u'_i}{\partial x_l}\right>\\& -2\nu\left<\frac{\partial u'_i}{\partial x_k} \frac{\partial u'_i}{\partial x_l} \frac{\partial u'_k}{\partial x_l}\right>- \frac{\partial }{\partial x_k}\left( \left<u'_k\varepsilon'\right>- \nu\frac{\partial \varepsilon}{\partial x_k} \right)- 2\nu^2\left< \frac{\partial^2 u'_i}{\partial x_kx_l} \frac{\partial^2 u'_i}{\partial x_kx_l} \right>- \frac{2\nu}{\rho}\frac{\partial}{\partial x_i} \left< \frac{\partial p'}{\partial x_l} \frac{\partial u'_i}{\partial x_l} \right> \end{aligned} tε+ukxkε=2νxkui(xluixluk+xiulxkul)2νxkxl2uiukxlui2νxkuixluixlukxk(ukενxkε)2ν2xkxl2uixkxl2uiρ2νxixlpxlui
下面逐项进行推导:

  • (1) ∂ u i ′ ∂ t \frac{\partial u'_i}{\partial t} tui ∂ ∂ x l ( ∂ u i ′ ∂ t ) = ∂ ∂ t ( ∂ u i ′ ∂ x l ) 2 ν ∂ u i ′ ∂ x l ∂ ∂ t ( ∂ u i ′ ∂ x l ) = ∂ ∂ t ( ν ∂ u i ′ ∂ x l ∂ u i ′ ∂ x l ) \begin{aligned} &\frac{\partial }{\partial x_l} \left( \frac{\partial u'_i}{\partial t} \right)= \frac{\partial }{\partial t} \left( \frac{\partial u'_i}{\partial x_l} \right)\\ &2\nu\frac{\partial u'_i}{\partial x_l} \frac{\partial }{\partial t} \left( \frac{\partial u'_i}{\partial x_l} \right)= \frac{\partial }{\partial t} \left( \nu\frac{\partial u'_i}{\partial x_l}\frac{\partial u'_i}{\partial x_l} \right) \end{aligned} xl(tui)=t(xlui)2νxluit(xlui)=t(νxluixlui)取平均运算后 < ∂ ∂ t ( ν ∂ u i ′ ∂ x l ∂ u i ′ ∂ x l ) > = ∂ ∂ t < ν ∂ u i ′ ∂ x l ∂ u i ′ ∂ x l > = ∂ ∂ t ν < ∂ u i ′ ∂ x l ∂ u i ′ ∂ x l > = ∂ ε ∂ t \begin{aligned} \left<\frac{\partial }{\partial t} \left( \nu\frac{\partial u'_i}{\partial x_l}\frac{\partial u'_i}{\partial x_l} \right) \right>&=\frac{\partial }{\partial t} \left< \nu\frac{\partial u'_i}{\partial x_l}\frac{\partial u'_i}{\partial x_l} \right>\\&=\frac{\partial }{\partial t} \nu\left< \frac{\partial u'_i}{\partial x_l}\frac{\partial u'_i}{\partial x_l} \right>\\&= \frac{\partial \varepsilon}{\partial t} \end{aligned} t(νxluixlui)=tνxluixlui=tνxluixlui=tε

  • (2) < u k > ∂ u i ′ ∂ x k \left<u_k\right>\frac{\partial u_i'}{\partial x_k} ukxkui ∂ ∂ x l ( < u k > ∂ u i ′ ∂ x k ) = ∂ < u k > ∂ x l ∂ u i ′ ∂ x k + < u k > ∂ 2 u i ′ ∂ x k x l \begin{aligned} \frac{\partial }{\partial x_l} \left( \left<u_k\right>\frac{\partial u_i'}{\partial x_k} \right)=\frac{\partial \left<u_k\right>}{\partial x_l}\frac{\partial u_i'}{\partial x_k}+ \left<u_k\right>\frac{\partial^2 u_i'}{\partial x_kx_l} \end{aligned} xl(ukxkui)=xlukxkui+ukxkxl2ui < 2 ν ∂ u i ′ ∂ x l ∂ < u k > ∂ x l ∂ u i ′ ∂ x k > + < 2 ν ∂ u i ′ ∂ x l < u k > ∂ 2 u i ′ ∂ x k x l > = 2 ν ∂ < u k > ∂ x l < ∂ u i ′ ∂ x l ∂ u i ′ ∂ x k > + < u k > < 2 ν ∂ u i ′ ∂ x l ∂ 2 u i ′ ∂ x k x l > = 2 ν ∂ < u k > ∂ x l < ∂ u i ′ ∂ x l ∂ u i ′ ∂ x k > + < u k > < 2 ν ∂ u i ′ ∂ x l ∂ ∂ x k ( ∂ u i ′ ∂ x l ) > = 2 ν ∂ < u k > ∂ x l < ∂ u i ′ ∂ x l ∂ u i ′ ∂ x k > + < u k > < ∂ ∂ x k ( ν ∂ u i ′ ∂ x l ∂ u i ′ ∂ x l ) > = 2 ν ∂ < u k > ∂ x l < ∂ u i ′ ∂ x l ∂ u i ′ ∂ x k > + < u k > ∂ ∂ x k ν < ∂ u i ′ ∂ x l ∂ u i ′ ∂ x l > = 2 ν ∂ < u i > ∂ x k < ∂ u l ′ ∂ x k ∂ u l ′ ∂ x i > + < u k > ∂ ε ∂ x k \begin{aligned} &\left< 2\nu\frac{\partial u'_i}{\partial x_l}\frac{\partial \left<u_k\right>}{\partial x_l}\frac{\partial u_i'}{\partial x_k} \right>+ \left< 2\nu\frac{\partial u'_i}{\partial x_l}\left<u_k\right>\frac{\partial^2 u_i'}{\partial x_kx_l} \right>\\=&2\nu\frac{\partial \left<u_k\right>}{\partial x_l} \left< \frac{\partial u'_i}{\partial x_l}\frac{\partial u_i'}{\partial x_k} \right>+ \left<u_k\right> \left< 2\nu\frac{\partial u'_i}{\partial x_l}\frac{\partial^2 u_i'}{\partial x_kx_l} \right>\\=&2\nu\frac{\partial \left<u_k\right>}{\partial x_l} \left< \frac{\partial u'_i}{\partial x_l}\frac{\partial u_i'}{\partial x_k} \right>+\left<u_k\right> \left< 2\nu\frac{\partial u'_i}{\partial x_l}\frac{\partial}{\partial x_k} \left( \frac{\partial u'_i}{\partial x_l} \right) \right>\\=&2\nu\frac{\partial \left<u_k\right>}{\partial x_l} \left< \frac{\partial u'_i}{\partial x_l}\frac{\partial u_i'}{\partial x_k} \right>+\left<u_k\right> \left< \frac{\partial}{\partial x_k} \left(\nu \frac{\partial u'_i}{\partial x_l} \frac{\partial u'_i}{\partial x_l} \right) \right>\\=&2\nu\frac{\partial \left<u_k\right>}{\partial x_l} \left< \frac{\partial u'_i}{\partial x_l}\frac{\partial u_i'}{\partial x_k} \right>+\left<u_k\right> \frac{\partial}{\partial x_k} \nu \left< \frac{\partial u'_i}{\partial x_l} \frac{\partial u'_i}{\partial x_l} \right>\\=&2\nu\frac{\partial \left<u_i\right>}{\partial x_k} \left< \frac{\partial u'_l}{\partial x_k}\frac{\partial u_l'}{\partial x_i} \right>+\left<u_k\right> \frac{\partial \varepsilon}{\partial x_k} \end{aligned} =====2νxluixlukxkui+2νxluiukxkxl2ui2νxlukxluixkui+uk2νxluixkxl2ui2νxlukxluixkui+uk2νxluixk(xlui)2νxlukxluixkui+ukxk(νxluixlui)2νxlukxluixkui+ukxkνxluixlui2νxkuixkulxiul+ukxkε上式最后一步应用了哑标可以用任意字母替换的原则,将 i → l , l → k , k → i i\to l, l\to k , k\to i il,lk,ki,以方便后面合并同类项。

  • (3) u k ′ ∂ < u i > ∂ x k u_k'\frac{\partial \left<u_i\right> }{\partial x_k} ukxkui ∂ ∂ x l ( u k ′ ∂ < u i > ∂ x k ) = ∂ u k ′ ∂ x l ∂ < u i > ∂ x k + u k ′ ∂ 2 < u i > ∂ x k x l \begin{aligned} \frac{\partial }{\partial x_l} \left( u_k'\frac{\partial \left<u_i\right> }{\partial x_k} \right)=\frac{\partial u'_k}{\partial x_l} \frac{\partial \left<u_i\right>}{\partial x_k}+ u'_k\frac{\partial^2 \left<u_i\right>}{\partial x_kx_l} \end{aligned} xl(ukxkui)=xlukxkui+ukxkxl2ui < 2 ν ∂ u i ′ ∂ x l ∂ u k ′ ∂ x l ∂ < u i > ∂ x k > + < 2 ν ∂ u i ′ ∂ x l u k ′ ∂ 2 < u i > ∂ x k x l > = 2 ν ∂ < u i > ∂ x k < ∂ u i ′ ∂ x l ∂ u k ′ ∂ x l > + 2 ν ∂ 2 < u i > ∂ x k x l < u k ′ ∂ u i ′ ∂ x l > \begin{aligned} &\left< 2\nu\frac{\partial u'_i}{\partial x_l} \frac{\partial u'_k}{\partial x_l} \frac{\partial \left<u_i\right>}{\partial x_k} \right>+ \left< 2\nu\frac{\partial u'_i}{\partial x_l} u'_k\frac{\partial^2 \left<u_i\right>}{\partial x_kx_l} \right>\\=& 2\nu \frac{\partial \left<u_i\right>}{\partial x_k} \left< \frac{\partial u'_i}{\partial x_l} \frac{\partial u'_k}{\partial x_l} \right>+ 2\nu \frac{\partial^2 \left<u_i\right>}{\partial x_kx_l} \left< u'_k \frac{\partial u'_i}{\partial x_l} \right> \end{aligned} =2νxluixlukxkui+2νxluiukxkxl2ui2νxkuixluixluk+2νxkxl2uiukxlui

  • (4) − 1 ρ ∂ p ′ ∂ x i -\frac{1}{\rho} \frac{\partial p'}{\partial x_i} ρ1xip ∂ ∂ x l ( − 1 ρ ∂ p ′ ∂ x i ) = − 1 ρ ∂ ∂ x i ( ∂ p ′ ∂ x l ) \begin{aligned} \frac{\partial }{\partial x_l} \left( -\frac{1}{\rho} \frac{\partial p'}{\partial x_i} \right)=-\frac{1}{\rho} \frac{\partial }{\partial x_i} \left( \frac{\partial p'}{\partial x_l} \right) \end{aligned} xl(ρ1xip)=ρ1xi(xlp) − 2 ν ρ ∂ u i ′ ∂ x l ∂ ∂ x i ( ∂ p ′ ∂ x l ) = − 2 ν ρ ∂ ∂ x i ( ∂ p ′ ∂ x l ∂ u i ′ ∂ x l ) − 2 ν ρ ∂ p ′ ∂ x l ∂ ∂ x i ( ∂ u i ′ ∂ x l ) = − 2 ν ρ ∂ ∂ x i ( ∂ p ′ ∂ x l ∂ u i ′ ∂ x l ) − 2 ν ρ ∂ p ′ ∂ x l ∂ ∂ x l ( ∂ u i ′ ∂ x i ) = − 2 ν ρ ∂ ∂ x i ( ∂ p ′ ∂ x l ∂ u i ′ ∂ x l ) \begin{aligned} -\frac{2\nu}{\rho} \frac{\partial u'_i}{\partial x_l} \frac{\partial }{\partial x_i} \left( \frac{\partial p'}{\partial x_l} \right)&=-\frac{2\nu}{\rho} \frac{\partial }{\partial x_i} \left( \frac{\partial p'}{\partial x_l} \frac{\partial u'_i}{\partial x_l} \right)- \frac{2\nu}{\rho} \frac{\partial p'}{\partial x_l} \frac{\partial }{\partial x_i} \left( \frac{\partial u'_i}{\partial x_l} \right)\\&=-\frac{2\nu}{\rho} \frac{\partial }{\partial x_i} \left( \frac{\partial p'}{\partial x_l} \frac{\partial u'_i}{\partial x_l} \right)- \frac{2\nu}{\rho} \frac{\partial p'}{\partial x_l} \frac{\partial }{\partial x_l} \left( \frac{\partial u'_i}{\partial x_i} \right)\\&=- \frac{2\nu}{\rho} \frac{\partial }{\partial x_i} \left( \frac{\partial p'}{\partial x_l} \frac{\partial u'_i}{\partial x_l} \right) \end{aligned} ρ2νxluixi(xlp)=ρ2νxi(xlpxlui)ρ2νxlpxi(xlui)=ρ2νxi(xlpxlui)ρ2νxlpxl(xiui)=ρ2νxi(xlpxlui)取平均运算后有
    < − 2 ν ρ ∂ ∂ x i ( ∂ p ′ ∂ x l ∂ u i ′ ∂ x l ) > = − 2 ν ρ ∂ ∂ x i < ∂ p ′ ∂ x l ∂ u i ′ ∂ x l > \begin{aligned} \left< -\frac{2\nu}{\rho} \frac{\partial }{\partial x_i} \left( \frac{\partial p'}{\partial x_l} \frac{\partial u'_i}{\partial x_l} \right) \right>= -\frac{2\nu}{\rho} \frac{\partial }{\partial x_i} \left< \frac{\partial p'}{\partial x_l} \frac{\partial u'_i}{\partial x_l} \right> \end{aligned} ρ2νxi(xlpxlui)=ρ2νxixlpxlui

  • (5) ν ∂ 2 u i ′ ∂ x k ∂ x k \nu \frac{\partial^2 u_i'}{\partial x_k\partial x_k} νxkxk2ui < 2 ν ∂ u i ′ ∂ x l ∂ ∂ x l ( ν ∂ 2 u i ′ ∂ x k ∂ x k ) > = ν 2 < 2 ∂ u i ′ ∂ x l ∂ ∂ x l ( ∂ 2 u i ′ ∂ x k ∂ x k ) > = ν 2 < 2 ∂ u i ′ ∂ x l ∂ 2 ∂ x k ∂ x k ( ∂ u i ′ ∂ x l ) > + ν 2 < 2 ∂ ∂ x k ( ∂ u i ′ ∂ x l ) ⋅ ∂ ∂ x k ( ∂ u i ′ ∂ x l ) > − ν 2 < 2 ∂ ∂ x k ( ∂ u i ′ ∂ x l ) ⋅ ∂ ∂ x k ( ∂ u i ′ ∂ x l ) > = ν 2 < ∂ ∂ x k ( 2 ∂ u i ′ ∂ x l ∂ ∂ x k ( ∂ u i ′ ∂ x l ) ) > − ν 2 < 2 ∂ ∂ x k ( ∂ u i ′ ∂ x l ) ⋅ ∂ ∂ x k ( ∂ u i ′ ∂ x l ) > = ν 2 < ∂ ∂ x k ( ∂ ∂ x k ( ∂ u i ′ ∂ x l ∂ u i ′ ∂ x l ) ) > − 2 ν 2 < ∂ 2 u i ′ ∂ x k ∂ x l ∂ 2 u i ′ ∂ x k ∂ x l > = ν ∂ ∂ x k ( ∂ ∂ x k ν < ∂ u i ′ ∂ x l ∂ u i ′ ∂ x l > ) − 2 ν 2 < ∂ 2 u i ′ ∂ x k ∂ x l ∂ 2 u i ′ ∂ x k ∂ x l > = ∂ ∂ x k ( ν ∂ ε ∂ x k ) − 2 ν 2 < ∂ 2 u i ′ ∂ x k ∂ x l ∂ 2 u i ′ ∂ x k ∂ x l > \begin{aligned} &\left< 2\nu\frac{\partial u'_i}{\partial x_l} \frac{\partial }{\partial x_l} \left( \nu \frac{\partial^2 u_i'}{\partial x_k\partial x_k} \right) \right>\\=& \nu^2 \left< 2\frac{\partial u'_i}{\partial x_l} \frac{\partial }{\partial x_l} \left( \frac{\partial^2 u_i'}{\partial x_k\partial x_k} \right) \right>\\=& \nu^2 \left< 2\frac{\partial u'_i}{\partial x_l} \frac{\partial^2 }{\partial x_k\partial x_k} \left( \frac{\partial u_i'}{\partial x_l} \right) \right>+ \nu^2 \left<2 \frac{\partial}{\partial x_k} \left( \frac{\partial u_i'}{\partial x_l} \right)\cdot \frac{\partial}{\partial x_k} \left( \frac{\partial u_i'}{\partial x_l} \right) \right> \\&-\nu^2 \left<2 \frac{\partial}{\partial x_k} \left( \frac{\partial u_i'}{\partial x_l} \right)\cdot \frac{\partial}{\partial x_k} \left( \frac{\partial u_i'}{\partial x_l} \right) \right>\\=& \nu^2 \left< \frac{\partial}{\partial x_k} \left( 2\frac{\partial u_i'}{\partial x_l} \frac{\partial}{\partial x_k} \left( \frac{\partial u_i'}{\partial x_l} \right) \right) \right>-\nu^2 \left<2 \frac{\partial}{\partial x_k} \left( \frac{\partial u_i'}{\partial x_l} \right)\cdot \frac{\partial}{\partial x_k} \left( \frac{\partial u_i'}{\partial x_l} \right) \right>\\=& \nu^2 \left< \frac{\partial}{\partial x_k} \left( \frac{\partial}{\partial x_k} \left( \frac{\partial u_i'}{\partial x_l} \frac{\partial u_i'}{\partial x_l} \right) \right) \right>-2\nu^2 \left< \frac{\partial^2 u_i'}{\partial x_k\partial x_l} \frac{\partial^2 u_i'}{\partial x_k\partial x_l} \right>\\=& \nu \frac{\partial}{\partial x_k} \left( \frac{\partial}{\partial x_k} \nu \left< \frac{\partial u_i'}{\partial x_l} \frac{\partial u_i'}{\partial x_l} \right> \right)-2\nu^2 \left< \frac{\partial^2 u_i'}{\partial x_k\partial x_l} \frac{\partial^2 u_i'}{\partial x_k\partial x_l} \right>\\=& \frac{\partial}{\partial x_k} \left( \nu \frac{\partial\varepsilon}{\partial x_k} \right)-2\nu^2 \left< \frac{\partial^2 u_i'}{\partial x_k\partial x_l} \frac{\partial^2 u_i'}{\partial x_k\partial x_l} \right> \end{aligned} ======2νxluixl(νxkxk2ui)ν22xluixl(xkxk2ui)ν22xluixkxk2(xlui)+ν22xk(xlui)xk(xlui)ν22xk(xlui)xk(xlui)ν2xk(2xluixk(xlui))ν22xk(xlui)xk(xlui)ν2xk(xk(xluixlui))2ν2xkxl2uixkxl2uiνxk(xkνxluixlui)2ν2xkxl2uixkxl2uixk(νxkε)2ν2xkxl2uixkxl2ui

  • (6) − ∂ ( u i ′ u k ′ ) ∂ x k -\frac{\partial \left(u_i'u_k'\right)}{\partial x_k} xk(uiuk)
    − ∂ ( u i ′ u k ′ ) ∂ x k = − u k ′ ∂ u i ′ ∂ x k − u i ′ ∂ u k ′ ∂ x k = − u k ′ ∂ u i ′ ∂ x k \begin{aligned} -\frac{\partial \left(u'_iu'_k\right)}{\partial x_k} =-u'_k\frac{\partial u'_i}{\partial x_k}- u'_i\frac{\partial u'_k}{\partial x_k}= -u'_k\frac{\partial u'_i}{\partial x_k} \end{aligned} xk(uiuk)=ukxkuiuixkuk=ukxkui − ∂ ∂ x l ( u k ′ ∂ u i ′ ∂ x k ) = − ∂ u k ′ ∂ x l ∂ u i ′ ∂ x k − u k ′ ∂ 2 u i ′ ∂ x k ∂ x l \begin{aligned} -\frac{\partial }{\partial x_l} \left( u'_k\frac{\partial u'_i}{\partial x_k} \right)= -\frac{\partial u'_k}{\partial x_l} \frac{\partial u'_i}{\partial x_k}- u'_k\frac{\partial^2 u'_i}{\partial x_k\partial x_l} \end{aligned} xl(ukxkui)=xlukxkuiukxkxl2ui < − 2 ν ∂ u i ′ ∂ x l ∂ u k ′ ∂ x l ∂ u i ′ ∂ x k > + < − 2 ν ∂ u i ′ ∂ x l u k ′ ∂ 2 u i ′ ∂ x k ∂ x l > = − 2 ν < ∂ u i ′ ∂ x l ∂ u k ′ ∂ x l ∂ u i ′ ∂ x k > − < u k ′ ⋅ 2 ν ∂ u i ′ ∂ x l ∂ ∂ x k ( ∂ u i ′ ∂ x l ) > = − 2 ν < ∂ u i ′ ∂ x l ∂ u k ′ ∂ x l ∂ u i ′ ∂ x k > − < u k ′ ⋅ ∂ ∂ x k ( ν ∂ u i ′ ∂ x l ∂ u i ′ ∂ x l ) > = − 2 ν < ∂ u i ′ ∂ x l ∂ u k ′ ∂ x l ∂ u i ′ ∂ x k > − < u k ′ ∂ ε ′ ∂ x k > = − 2 ν < ∂ u i ′ ∂ x l ∂ u k ′ ∂ x l ∂ u i ′ ∂ x k > − < ∂ ( u k ′ ε ′ ) ∂ x k − ε ′ ∂ u k ′ ∂ x k > = − 2 ν < ∂ u i ′ ∂ x l ∂ u k ′ ∂ x l ∂ u i ′ ∂ x k > − ∂ < u k ′ ε ′ > ∂ x k \begin{aligned} &\left< -2\nu\frac{\partial u'_i}{\partial x_l} \frac{\partial u'_k}{\partial x_l} \frac{\partial u'_i}{\partial x_k} \right> + \left< -2\nu\frac{\partial u'_i}{\partial x_l} u'_k\frac{\partial^2 u'_i}{\partial x_k\partial x_l} \right>\\=& -2\nu \left< \frac{\partial u'_i}{\partial x_l} \frac{\partial u'_k}{\partial x_l} \frac{\partial u'_i}{\partial x_k} \right>-\left<u'_k\cdot 2\nu\frac{\partial u'_i}{\partial x_l} \frac{\partial }{\partial x_k} \left( \frac{\partial u'_i}{\partial x_l} \right) \right>\\=& -2\nu \left< \frac{\partial u'_i}{\partial x_l} \frac{\partial u'_k}{\partial x_l} \frac{\partial u'_i}{\partial x_k} \right>-\left<u'_k\cdot \frac{\partial }{\partial x_k} \left(\nu \frac{\partial u'_i}{\partial x_l} \frac{\partial u'_i}{\partial x_l} \right) \right>\\=& -2\nu \left< \frac{\partial u'_i}{\partial x_l} \frac{\partial u'_k}{\partial x_l} \frac{\partial u'_i}{\partial x_k} \right>-\left<u'_k \frac{\partial \varepsilon'}{\partial x_k} \right>\\=& -2\nu \left< \frac{\partial u'_i}{\partial x_l} \frac{\partial u'_k}{\partial x_l} \frac{\partial u'_i}{\partial x_k} \right>-\left< \frac{\partial (u'_k\varepsilon')}{\partial x_k}- \varepsilon' \frac{\partial u'_k}{\partial x_k} \right>\\=& -2\nu \left< \frac{\partial u'_i}{\partial x_l} \frac{\partial u'_k}{\partial x_l} \frac{\partial u'_i}{\partial x_k} \right>- \frac{\partial \left<u'_k\varepsilon'\right>}{\partial x_k} \end{aligned} =====2νxluixlukxkui+2νxluiukxkxl2ui2νxluixlukxkuiuk2νxluixk(xlui)2νxluixlukxkuiukxk(νxluixlui)2νxluixlukxkuiukxkε2νxluixlukxkuixk(ukε)εxkuk2νxluixlukxkuixkukε

  • (7) ∂ < u i ′ u k ′ > ∂ x k \frac{\partial\left<u_i'u_k'\right>}{\partial x_k} xkuiuk ∂ < u i ′ u k ′ > ∂ x k = < ∂ ( u i ′ u k ′ ) ∂ x k > \begin{aligned} \frac{\partial\left<u_i'u_k'\right>}{\partial x_k}= \left< \frac{\partial\left(u_i'u_k'\right)}{\partial x_k} \right> \end{aligned} xkuiuk=xk(uiuk) ∂ ∂ x l < ∂ ( u i ′ u k ′ ) ∂ x k > = < ∂ ∂ x l ( ∂ ( u i ′ u k ′ ) ∂ x k ) > \begin{aligned} \frac{\partial }{\partial x_l} \left< \frac{\partial\left(u_i'u_k'\right)}{\partial x_k} \right>= \left< \frac{\partial }{\partial x_l} \left( \frac{\partial\left(u_i'u_k'\right)}{\partial x_k} \right) \right> \end{aligned} xlxk(uiuk)=xl(xk(uiuk)) < 2 ν ∂ u i ′ ∂ x l < ∂ ∂ x l ( ∂ ( u i ′ u k ′ ) ∂ x k ) > > = 2 ν < ∂ u i ′ ∂ x l > < ∂ ∂ x l ( ∂ ( u i ′ u k ′ ) ∂ x k ) > = 0 \begin{aligned} \left< 2\nu\frac{\partial u'_i}{\partial x_l} \left< \frac{\partial }{\partial x_l} \left( \frac{\partial\left(u_i'u_k'\right)}{\partial x_k} \right) \right>\right>=&2\nu \left< \frac{\partial u'_i}{\partial x_l} \right> \left< \frac{\partial }{\partial x_l} \left( \frac{\partial\left(u_i'u_k'\right)}{\partial x_k} \right) \right>=0 \end{aligned} 2νxluixl(xk(uiuk))=2νxluixl(xk(uiuk))=0其实上式可以直接运用平均运算的性质 < g ′ < f > > = 0 \left<g'\left<f\right>\right>=0 gf=0
    整合以上各项,便可以得到: ∂ ε ∂ t + 2 ν ∂ < u i > ∂ x k < ∂ u l ′ ∂ x k ∂ u l ′ ∂ x i > + < u k > ∂ ε ∂ x k + 2 ν ∂ < u i > ∂ x k < ∂ u i ′ ∂ x l ∂ u k ′ ∂ x l > + 2 ν ∂ 2 < u i > ∂ x k x l < u k ′ ∂ u i ′ ∂ x l > = − 2 ν ρ ∂ ∂ x i < ∂ p ′ ∂ x l ∂ u i ′ ∂ x l > + ∂ ∂ x k ( ν ∂ ε ∂ x k ) − 2 ν < ∂ u i ′ ∂ x l ∂ u k ′ ∂ x l ∂ u i ′ ∂ x k > − ∂ < u k ′ ε ′ > ∂ x k − 2 ν 2 < ∂ 2 u i ′ ∂ x k ∂ x l ∂ 2 u i ′ ∂ x k ∂ x l > . \begin{aligned} &\frac{\partial \varepsilon}{\partial t}+ 2\nu\frac{\partial \left<u_i\right>}{\partial x_k} \left< \frac{\partial u'_l}{\partial x_k}\frac{\partial u_l'}{\partial x_i} \right>+\left<u_k\right> \frac{\partial \varepsilon}{\partial x_k}+2\nu \frac{\partial \left<u_i\right>}{\partial x_k} \left< \frac{\partial u'_i}{\partial x_l} \frac{\partial u'_k}{\partial x_l} \right>+ 2\nu \frac{\partial^2 \left<u_i\right>}{\partial x_kx_l} \left< u'_k \frac{\partial u'_i}{\partial x_l} \right>= -\frac{2\nu}{\rho} \frac{\partial }{\partial x_i} \left< \frac{\partial p'}{\partial x_l} \frac{\partial u'_i}{\partial x_l} \right>+\\&\frac{\partial}{\partial x_k} \left( \nu \frac{\partial\varepsilon}{\partial x_k} \right) -2\nu \left< \frac{\partial u'_i}{\partial x_l} \frac{\partial u'_k}{\partial x_l} \frac{\partial u'_i}{\partial x_k} \right>- \frac{\partial \left<u'_k\varepsilon'\right>}{\partial x_k}-2\nu^2 \left< \frac{\partial^2 u_i'}{\partial x_k\partial x_l} \frac{\partial^2 u_i'}{\partial x_k\partial x_l} \right>. \end{aligned} tε+2νxkuixkulxiul+ukxkε+2νxkuixluixluk+2νxkxl2uiukxlui=ρ2νxixlpxlui+xk(νxkε)2νxluixlukxkuixkukε2ν2xkxl2uixkxl2ui.移项并合并同类项后便可以得到湍动能耗散率输运方程 ∂ ε ∂ t + < u k > ∂ ε ∂ x k = − 2 ν ∂ < u i > ∂ x k ( < ∂ u i ′ ∂ x l ∂ u k ′ ∂ x l > + < ∂ u l ′ ∂ x i ∂ u l ′ ∂ x k > ) − 2 ν ∂ 2 < u i > ∂ x k ∂ x l < u k ′ ∂ u i ′ ∂ x l > − 2 ν < ∂ u i ′ ∂ x k ∂ u i ′ ∂ x l ∂ u k ′ ∂ x l > − ∂ ∂ x k ( < u k ′ ε ′ > − ν ∂ ε ∂ x k ) − 2 ν 2 < ∂ 2 u i ′ ∂ x k x l ∂ 2 u i ′ ∂ x k x l > − 2 ν ρ ∂ ∂ x i < ∂ p ′ ∂ x l ∂ u i ′ ∂ x l > \begin{aligned} &\frac{\partial \varepsilon}{\partial t}+ \left<u_k\right>\frac{\partial \varepsilon}{\partial x_k}= -2\nu\frac{\partial \left<u_i\right>}{\partial x_k} \left( \left<\frac{\partial u'_i}{\partial x_l}\frac{\partial u'_k}{\partial x_l}\right>+ \left<\frac{\partial u'_l}{\partial x_i}\frac{\partial u'_l}{\partial x_k}\right> \right)- 2\nu\frac{\partial^2 \left<u_i\right>}{\partial x_k \partial x_l} \left<u'_k\frac{\partial u'_i}{\partial x_l}\right>\\& -2\nu\left<\frac{\partial u'_i}{\partial x_k} \frac{\partial u'_i}{\partial x_l} \frac{\partial u'_k}{\partial x_l}\right>- \frac{\partial }{\partial x_k}\left( \left<u'_k\varepsilon'\right>- \nu\frac{\partial \varepsilon}{\partial x_k} \right)- 2\nu^2\left< \frac{\partial^2 u'_i}{\partial x_kx_l} \frac{\partial^2 u'_i}{\partial x_kx_l} \right>- \frac{2\nu}{\rho}\frac{\partial}{\partial x_i} \left< \frac{\partial p'}{\partial x_l} \frac{\partial u'_i}{\partial x_l} \right> \end{aligned} tε+ukxkε=2νxkui(xluixluk+xiulxkul)2νxkxl2uiukxlui2νxkuixluixlukxk(ukενxkε)2ν2xkxl2uixkxl2uiρ2νxixlpxlui

三、湍动能耗散率输运方程各项解析

将公式各项标号如下: ∂ ε ∂ t + < u k > ∂ ε ∂ x k ⏟ ( 1 ) = − 2 ν ∂ < u i > ∂ x k ( < ∂ u i ′ ∂ x l ∂ u k ′ ∂ x l > + < ∂ u l ′ ∂ x i ∂ u l ′ ∂ x k > ) ⏟ ( 2 ) − 2 ν ∂ 2 < u i > ∂ x k ∂ x l < u k ′ ∂ u i ′ ∂ x l > ⏟ ( 3 ) − 2 ν < ∂ u i ′ ∂ x k ∂ u i ′ ∂ x l ∂ u k ′ ∂ x l > ⏟ ( 4 ) − ∂ ∂ x k ( < u k ′ ε ′ > ⏟ ( 5 a ) − ν ∂ ε ∂ x k ⏟ ( 5 b ) ) − 2 ν 2 < ∂ 2 u i ′ ∂ x k x l ∂ 2 u i ′ ∂ x k x l > ⏟ ( 6 ) − 2 ν ρ ∂ ∂ x i < ∂ p ′ ∂ x l ∂ u i ′ ∂ x l > ⏟ ( 7 ) \begin{aligned} &\underset{(1)}{\underbrace{\frac{\partial \varepsilon}{\partial t}+ \left<u_k\right>\frac{\partial \varepsilon}{\partial x_k}}}= \underset{(2)}{\underbrace{-2\nu\frac{\partial \left<u_i\right>}{\partial x_k} \left( \left<\frac{\partial u'_i}{\partial x_l}\frac{\partial u'_k}{\partial x_l}\right>+ \left<\frac{\partial u'_l}{\partial x_i}\frac{\partial u'_l}{\partial x_k}\right> \right)}} - \underset{(3)}{\underbrace{2\nu\frac{\partial^2 \left<u_i\right>}{\partial x_k \partial x_l} \left<u'_k\frac{\partial u'_i}{\partial x_l}\right>}} \\& \underset{(4)}{\underbrace{-2\nu\left<\frac{\partial u'_i}{\partial x_k} \frac{\partial u'_i}{\partial x_l} \frac{\partial u'_k}{\partial x_l}\right>}} - \frac{\partial }{\partial x_k}( \underset{(5a)}{\underbrace{\left<u'_k\varepsilon'\right>}} - \underset{(5b)}{\underbrace{\nu\frac{\partial \varepsilon}{\partial x_k}}})- \underset{(6)}{\underbrace{2\nu^2\left< \frac{\partial^2 u'_i}{\partial x_kx_l} \frac{\partial^2 u'_i}{\partial x_kx_l} \right>}} - \underset{(7)}{\underbrace{\frac{2\nu}{\rho}\frac{\partial}{\partial x_i} \left< \frac{\partial p'}{\partial x_l} \frac{\partial u'_i}{\partial x_l} \right>}} \end{aligned} (1) tε+ukxkε=(2) 2νxkui(xluixluk+xiulxkul)(3) 2νxkxl2uiukxlui(4) 2νxkuixluixlukxk((5a) ukε(5b) νxkε)(6) 2ν2xkxl2uixkxl2ui(7) ρ2νxixlpxlui
(1)由平均运动引起的对流;
(2)平均应变率的涡旋拉伸作用导致的生成项(大涡拉伸);
(3)平均运动导致的生成项(大涡拉伸);
(4)由湍流应变的拉伸作用导致的生成项(小涡拉伸);
(5) a.湍流输运引起的扩散 \quad b.粘性扩散(分子扩散);
(6)粘性耗散;
(7)由于压力波动引起的扩散。

四、参考资料

  • Two-dimensional asymmetric turbulent flow in ducts. Kemal Hanjalic.1970. PhD-Thesis.
  • 湍流理论与模拟》第二版.张兆顺、崔桂香、许春晓、黄伟希.
  • 8
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
输运方程是描述粒子或能量在空间中传输的数学模型。在Matlab中,可以使用偏微分方程求解器来求解输运方程。 Matlab提供了几种求解偏微分方程的函数,其中包括pdepe和pdepeopt。pdepe函数可以用于求解一维和二维的定常或非定常偏微分方程,而pdepeopt函数可以用于设置求解选项。 使用pdepe函数求解输运方程的一般步骤如下: 1. 定义偏微分方程的形式,包括方程的系数、边界条件和初始条件。 2. 定义空间网格和时间步长。 3. 调用pdepe函数进行求解,并获取解的结果。 4. 可以使用plot函数将结果可视化。 以下是一个示例代码,演示了如何使用Matlab求解一维输运方程: ```matlab function transport_equation() x = linspace(0, 1, 100); % 定义空间网格 t = linspace(0, 1, 100); % 定义时间步长 m = 0; % 方程系数 d = 1; % 方程系数 sol = pdepe(m, @transport_pde, @transport_ic, @transport_bc, x, t); % 求解输运方程 u = sol(:,:,1); % 获取解的结果 surf(x, t, u); % 可视化结果 xlabel('空间'); ylabel('时间'); zlabel('解'); end function [c, f, s] = transport_pde(x, t, u, DuDx) c = 1; % 方程系数 f = d*DuDx; % 方程形式 s = 0; % 方程形式 end function u0 = transport_ic(x) u0 = sin(pi*x); % 初始条件 end function [pl, ql, pr, qr] = transport_bc(xl, ul, xr, ur, t) pl = ul; % 左边界条件 ql = 0; % 左边界条件 pr = ur; % 右边界条件 qr = 0; % 右边界条件 end ``` 以上代码定义了一个一维输运方程,使用pdepe函数求解,并使用surf函数将结果可视化。你可以根据具体的输运方程进行修改和调整。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值