《离散时间信号处理》——1.离散时间信号与系统

写在前面:本博客是《离散时间信号处理》奥本海姆第三版的学习笔记,仅供个人学习记录使用

一、信号分类

(1)连续时间信号:定义在一个连续时间域上,可以用一个连续独立变量来表示,又称作模拟信号。
(2)离散时间信号:定义在离散时刻点上,这样独立变量便具有离散值,即离散时间信号表示成数值的序列。
(3)数字信号:在时间上和幅度上都是离散的信号。
这本书主要围绕离散时间信号展开。

二、离散时间信号

1. 离散时间信号的表达式

(1)离散时间信号在数学上采用数值序列(数值集合)表示,序列 x x x表示为: x = x [ n ] , − ∞ < n < ∞ x={x[n]}, -\infty <n<\infty x=x[n],<n<实际上, x [ n ] x[n] x[n]为周期采样连续模拟信号 x a ( t ) x_{a}(t) xa(t) n T nT nT时刻的取值,即 x [ n ] = x a ( n T ) , − ∞ < n < ∞ x[n]=x_{a}(nT), -\infty <n<\infty x[n]=xa(nT),<n<其中, T T T为采样周期, 1 / T 1/T 1/T为采样率。

(2)离散时间信号的表示方法:

  • 图解法:直观,但不便记录
    图解法

  • 枚举法:简单,但不便表示长序列
    枚举法

  • 函数法:可表示长序列,但不便表示无规律序列
    函数法

2. 离散时间信号的能量与功率

(1)离散时间信号/序列 x [ n ] x[n] x[n]在区间 [ n 1 , n 2 ] [n_{1},n_{2}] [n1,n2]内的能量和平均功率定义为: E = ∑ n = n 1 n 2 ∣ x [ n ] ∣ 2 , P = 1 n 2 − n 1 + 1 ∑ n = n 1 n 2 ∣ x [ n ] ∣ 2 E=\sum_{n=n_{1}}^{n_{2}}|x[n]|^{2},P=\frac{1}{n_{2}-n_{1}+1} \sum_{n=n_{1}}^{n_{2}}|x[n]|^{2} E=n=n1n2x[n]2,P=n2n1+11n=n1n2x[n]2在无限区间内的能量和平均功率定义为: E ∞ = lim ⁡ N → ∞ ∑ n = − N N ∣ x [ n ] ∣ 2 = ∑ n = − ∞ ∞ ∣ x [ n ] ∣ 2 , P ∞ = lim ⁡ N → ∞ 1 2 N + 1 ∑ n = − N N ∣ x [ n ] ∣ 2 E_{\infty }=\lim_{N \to \infty}\sum_{n=-N}^{N}|x[n]|^{2}=\sum_{n=-\infty }^{\infty }|x[n]|^{2},P_{\infty }=\lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N}|x[n]|^{2} E=Nlimn=NNx[n]2=n=x[n]2,P=Nlim2N+11n=NNx[n]2(2)能量信号与功率信号的特点

  • 能量信号: 0 < E < ∞ , P = 0 0<E<\infty ,P=0 0<E<,P=0(能量有限,功率为0)
    其特征为:信号的振幅和持续时间均有限,非周期性。
    例如:单个矩形脉冲
  • 功率信号: E ⟶ ∞ , 0 < P < ∞ E\longrightarrow \infty ,0<P<\infty E,0<P<(能量趋于无穷,功率有限)
    其特征为:信号的持续时间无限
    例如:直流信号、周期信号和随机信号。

注意:一个信号可以既不是能量信号也不是功率信号,但不可能既是能量信号又是功率信号。

3. 基本序列

(1)单位脉冲序列
单位脉冲序列
注意:任意序列可表示为一组幅度加权不同延迟的单位脉冲序列之和!

扩展,对于单位冲激函数 δ ( t ) \delta (t) δ(t)有: { ∫ − ∞ ∞ δ ( t ) d t = 1 δ ( t ) = 0 , t ≠ 0 \begin{cases} \int_{-\infty }^{\infty }\delta (t)dt=1 \\ \delta (t)=0,t\neq0 \end{cases} {δ(t)dt=1δ(t)=0,t=0冲激函数的性质:
(1)抽样性: ∫ − ∞ ∞ δ ( t ) f ( t ) d t = ∫ − ∞ ∞ δ ( t ) f ( 0 ) d t = f ( 0 ) ∫ − ∞ ∞ δ ( t ) d t = f ( 0 ) \int_{-\infty }^{\infty } \delta (t)f(t)dt=\int_{-\infty }^{\infty } \delta (t)f(0)dt=f(0)\int_{-\infty }^{\infty } \delta (t)dt=f(0) δ(t)f(t)dt=δ(t)f(0)dt=f(0)δ(t)dt=f(0)
(2)奇偶性: δ ( t ) = δ ( − t ) \delta (t)=\delta (-t) δ(t)=δ(t)
(3)尺度变换: δ ( a t ) = δ ( t ) / ∣ a ∣ \delta (at)=\delta (t)/|a| δ(at)=δ(t)/∣a
(4)微积分: δ ( t ) = d u ( t ) / d t , ∫ − ∞ t δ ( τ ) d τ = u ( t ) \delta (t)=du(t)/dt,\int_{-\infty }^{t} \delta (\tau )d\tau =u(t) δ(t)=du(t)/dt,tδ(τ)dτ=u(t)
(5)卷积: f ( t ) ∗ δ ( t ) = f ( t ) , f ( t ) ∗ δ ( t − t 0 ) = f ( t − t 0 ) f(t)*\delta (t)=f(t),f(t)*\delta (t-t_{0})=f(t-t_{0}) f(t)δ(t)=f(t),f(t)δ(tt0)=f(tt0)

表达式

(2)单位阶跃序列
单位阶跃序列
将单位阶跃序列看作是一组延迟的单位脉冲序列之和:
表达式

将单位脉冲序列看作单位阶跃序列的一阶后向差分:
表达式

(3)矩形序列
矩形序列
(4)指数序列
指数序列

(5)正弦序列
正弦序列
对于正弦信号若满足周期性:
表达式
需要满足: w 0 N = 2 π k w_{0}N=2\pi k w0N=2πk

4. 序列运算

(1)延迟: y [ n ] = x [ n − n 0 ] y[n]=x[n-n_{0}] y[n]=x[nn0]

(2)反褶: y [ n ] = x [ − n ] y[n]=x[-n] y[n]=x[n]

(3)标量加: y [ n ] = c + x [ n ] y[n]=c+x[n] y[n]=c+x[n]

(4)矢量加: y [ n ] = x 1 [ n ] + x 2 [ n ] y[n]=x_{1}[n]+x_{2}[n] y[n]=x1[n]+x2[n]

(5)标量乘: y [ n ] = c ⋅ x [ n ] y[n]=c\cdot x[n] y[n]=cx[n]

(6)矢量乘: y [ n ] = x 1 [ n ] ⋅ x 2 [ n ] y[n]=x_{1}[n]\cdot x_{2}[n] y[n]=x1[n]x2[n]

(7)卷积: y [ n ] = x [ n ] ∗ h [ n ] = ∑ k = − ∞ ∞ x [ k ] h [ n − k ] = ∑ k = − ∞ ∞ x [ n − k ] h [ k ] y[n]=x[n]*h[n]=\sum_{k=-\infty }^{\infty } x[k]h[n-k]=\sum_{k=-\infty }^{\infty }x[n-k]h[k] y[n]=x[n]h[n]=k=x[k]h[nk]=k=x[nk]h[k]卷积性质:

  • x [ n ] ∗ h [ n ] = h [ n ] ∗ x [ n ] x[n]*h[n]=h[n]*x[n] x[n]h[n]=h[n]x[n]
  • x [ n ] ∗ ( h 1 [ n ] + h 2 [ n ] ) = x [ n ] ∗ h 1 [ n ] + x [ n ] ∗ h 2 [ n ] x[n]*(h_1[n]+h_{2}[n])=x[n]*h_1[n]+x[n]*h_{2}[n] x[n](h1[n]+h2[n])=x[n]h1[n]+x[n]h2[n]
  • ( x [ n ] ∗ h 1 [ n ] ) ∗ h 2 [ n ] = x [ n ] ∗ ( h 1 [ n ] ∗ h 2 [ n ] ) (x[n]*h_{1}[n])*h_{2}[n]=x[n]*(h_{1}[n]*h_{2}[n]) (x[n]h1[n])h2[n]=x[n](h1[n]h2[n])
  • x [ n ] ∗ δ [ n ] = x [ n ] x[n]*\delta [n]=x[n] x[n]δ[n]=x[n] x [ n ] ∗ δ [ n − n 0 ] = x [ n − n 0 ] x[n]*\delta [n-n_{0}]=x[n-n_{0}] x[n]δ[nn0]=x[nn0]
  • x [ n − n 1 ] ∗ h [ n − n 2 ] = x [ n ] ∗ h [ n − n 1 − n 2 ] x[n-n_{1}]*h[n-n_{2}]=x[n]*h[n-n_{1}-n_{2}] x[nn1]h[nn2]=x[n]h[nn1n2]

三、离散时间系统

定义:将输入序列映射为输出序列的变换或操作符。
离散时间系统

1. 常用离散时间系统

(1)理想延迟系统: y [ n ] = x [ n − n d ] y[n]=x[n-n_{d}] y[n]=x[nnd]

(2)累计系统: y [ n ] = ∑ k = − ∞ ∞ x [ k ] y[n]=\sum_{k=-\infty }^{\infty }x[k] y[n]=k=x[k]

(3)滑动平均: y [ n ] = 1 M 1 + M 2 + 1 ∑ k = − M 1 M 2 x [ n − k ] y[n]=\frac{1}{M_{1}+M_{2}+1}\sum_{k=-M_{1}}^{M_{2}}x[n-k] y[n]=M1+M2+11k=M1M2x[nk]

(4)下采样/压缩系统: y [ n ] = x [ M n ] y[n]=x[Mn] y[n]=x[Mn]

(5)后向差分: y [ n ] = x [ n ] − x [ n − 1 ] y[n]=x[n]-x[n-1] y[n]=x[n]x[n1]

(6)前向差分: y [ n ] = x [ n + 1 ] − x [ n ] y[n]=x[n+1]-x[n] y[n]=x[n+1]x[n]

2. 离散时间系统分类

(1)无记忆系统: 在每一个 n n n值上的输出 y [ n ] y[n] y[n]只决定于同一 值(时刻)的输入 x [ n ] x[n] x[n]

(2)线性系统(叠加原理) y 1 [ n ] y_{1}[n] y1[n] y 2 [ n ] y_{2}[n] y2[n]分别是输入为 x 1 [ n ] x_{1}[n] x1[n] x 2 [ n ] x_{2}[n] x2[n]时某一 系统的响应,且当且仅当下式成立:

线性系统
上式第一个性质为可加性,第二个性质为齐次性/比例性。

(3)时不变系统(延迟不变性):系统对所有 n 0 n_{0} n0,值为 x 1 [ n ] = x [ n − n 0 ] x_{1}[n]=x[n-n_{0}] x1[n]=x[nn0]的输入序列将产生值为 y 1 [ n ] = y [ n − n 0 ] y_{1}[n]=y[n-n_{0}] y1[n]=y[nn0]的输出序列。

(4)因果系统:系统对任一选取的 n 0 n_{0} n0,输出序列在 n = n 0 n=n_{0} n=n0的值仅仅取决于输入序列在 n ≤ n 0 n\le n_{0} nn0的值。 (关系到实际中系统能否实现)

(5)稳定系统:当且仅当每一个有界的输入序列都产生一个有界的输出序列,则称该系统在有界输入有界输出(BIBO)意义下是稳定的。BIBO表示为:
稳定系统

(6)逆系统:如果 h [ n ] ∗ h i [ n ] = h i [ n ] ∗ h [ n ] = δ [ n ] h[n]*h_{i}[n]=h_{i}[n]*h[n]=\delta [n] h[n]hi[n]=hi[n]h[n]=δ[n],则 h [ n ] h[n] h[n] h i [ n ] h_{i}[n] hi[n]互为逆系统。

四、线性常系数差分方程

(1)定义:系统的输入 x [ n ] x[n] x[n]和输出 y [ n ] y[n] y[n]满足 N N N阶线性常系数差分方程。

(2)通用表达式为:
线性常系数差分方程
(3)线性常系数差分方程的特点:

  • 有限/无限:输出序列的第n个值不仅取决于该时刻的输入样值,而且与以前的输出值有关
  • 线性: y [ n − k ] y[n-k] y[nk] x [ n − m ] x[n-m] x[nm]项都只有一次幂
  • 常系数:方程中 a k a_{k} ak b m b_{m} bm为常数(时不变)
  • 阶数:差分方程中 y [ n ] y[n] y[n]项的最高和最低序号差值
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值