【文献阅读:信道估计】Deep Residual Learning Meets OFDM Channel Estimation

文献地址:https://ieeexplore.ieee.org/document/8944280
文献Github相关代码:https://github.com/graceBaoXP/Residual_CNN


一、解决的问题

介绍了一种专门用于OFDM信道估计的基于残差学习的深度神经网络ReEsNet,实验表示,该模型相比于ChannelNet具有更精确的信道估计值。

二、解决的思路与方法

1. 背景
ChannelNet存在以下缺点:
(1)在程序的第一步进行插值(预上采样),之后的所有计算都在大尺寸输入上进行,因此显著增加了计算成本;
(2)插值方法的选择影响最终性能,这增加了一个在设计网络时考虑的超参数;
(3)SRCNN和DnCNN不是端到端训练,而是分开训练;
(4)网络规模很大,SRCNN和DnCNN共有23个卷积层,总共670k个参数。

2. 思路
引入残差网络,有以下好处:
(1)通过忽略输入和目标之间的共同信息,该模型可以专注于学习高频差异,降低了学习难度,提高了学习效率;
(2)它减轻了由深层网络引起的梯度消失问题。

基于深度学习的信道估计模块ReEsNet:
基于深度学习的信道估计模块ReEsNet
3. 模型参数
(1)第一层是具有16个大小为 3 × 3 × 2 3×3×2 3×3×2的滤波器的卷积层,它将大小为 N p f × N p n × 2 Npf×Npn×2 Npf×Npn×2(复数被分成实部和虚部,因此最后一个维度为2的输入Hp映射到大小为 N p f × N p n × 16 Npf×Npn×16 Npf×Npn×16的输出。
(2)下面是4个ResBlock,每个RES block由两个卷积层和中间的一个ReLU层组成,每个卷积层有16个大小为 3 × 3 × 16 3×3×16 3×3×16的滤波器。
(3)ResBolcks旁边是一个卷积层,具有16个大小为 3 × 3 × 16 3×3×16 3×3×16的滤波器,该层的输出大小为 N p f × N p n × 16 Npf×Npn×16 Npf×Npn×16
(4)上采样层实现为转置卷积(反卷积层),可以通过不同的因素缩放图像的高度和宽度,将数据大小从 N p f × N p n × 16 Npf×Npn×16 Npf×Npn×16扩大到 N f × N n × 16 Nf×Nn×16 Nf×Nn×16
(5)最后的卷积层具有2个大小为 3 × 3 × 16 3×3×16 3×3×16的滤波器,估计的大小为Nf×Nn×2的整个信道H是该层的输出。

4. 与ChannelNet相比,ReEsNet的优点
(1)上采样层位于模型的尾部(后上采样),之前的所有计算都在小尺寸的输入上进行,计算复杂度较低,这在最近的超分辨率研究中更受青睐。
(2)上采样层以转置卷积的形式实现,是一种可学习的上采样方法,可以训练得到最优权值。
(3)ReEsNet可以端到端训练。
(4)在不降低性能的情况下,最小化了网络的大小,形成了一个只有53k参数的紧凑网络。

三、解决的效果与结论

1. 仿真实验过程
(1)接收端提取出导频信号

导频格式:导频格式
(2)将导频信号输入至ReEsNet中进行信道估计。
(3)四种信道估计算法的均方误差MSE比较。

2. 仿真参数
仿真参数
性能比较:ReEsNet、ChannelNet、LS和LMMSE的信道估计均方误差MSE比较。
LOSS函数:采用L1损失函数。
Loss函数
3. 仿真结果
四种信道估计算法的均方误差MSE比较:
在这里插入图片描述
(1)LS仅在非导频位置应用线性插值来估计信道,因此性能是所有4种方法中最差的。LMMSE需要二阶信道统计量和噪声方差作为先验信息,这在实际通信系统中是不切实际的,尤其是当用户速度变化时,因此其性能被视为下限。对于其余两种不需要信道统计和噪声方差的基于深度学习的方法,ReEsNet优于ChannelNet,在低SNR区具有2到3dB的增益,在高SNR区具有4到5dB的增益。
(2)对于48个导频的情况,可以看到,随着导频数量的增加,性能越来越接近,原因是导频数量的增加降低了超分辨问题的难度。尽管如此,ReEsNet仍然胜过ChannelNet。
(3)24个导频时,ReEsNet在具有4条路径的扩展行人A模型(EPA)下被训练,然后在具有7条路径、4条路径、1条路径和WINNERII模型A1场景(室内)的EPA下被测试,仿真结果表示,信道失配对估计性能没有显著影响。

  • 17
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
deep residual learning for image recognition是一种用于图像识别的深度残差学习方法。该方法通过引入残差块(residual block)来构建深度神经网络,以解决深度网络训练过程中的梯度消失和梯度爆炸等问题。 在传统的深度学习网络中,网络层数增加时,随之带来的问题是梯度消失和梯度爆炸。这意味着在网络中进行反向传播时,梯度会变得非常小或非常大,导致网络训练变得困难。deep residual learning则使用了残差连接(residual connection)来解决这一问题。 在残差块中,输入特征图被直接连接到输出特征图上,从而允许网络直接学习输入与输出之间的残差。这样一来,即使网络层数增加,也可以保持梯度相对稳定,加速网络训练的过程。另外,通过残差连接,网络也可以更好地捕获图像中的细节和不同尺度的特征。 使用deep residual learning方法进行图像识别时,我们可以通过在网络中堆叠多个残差块来增加网络的深度。这样,网络可以更好地提取图像中的特征,并在训练过程中学习到更复杂的表示。通过大规模图像数据训练,deep residual learning可以在很多图像识别任务中达到甚至超过人类表现的准确性。 总之,deep residual learning for image recognition是一种利用残差连接解决梯度消失和梯度爆炸问题的深度学习方法,通过增加网络深度并利用残差学习,在图像识别任务中获得了突破性的表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值