图神经网络(三)MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing

MixHop是一种图神经网络模型,通过混合不同邻域的特征来增强泛化能力,避免拉普拉斯平滑问题。与传统GCN仅使用一阶邻域不同,MixHop结合了多种距离的邻域信息,通过差分算子学习邻域混合关系,表现出色且无需额外的内存或计算复杂性。
摘要由CSDN通过智能技术生成

MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing
GitHub: github.com/samihaija/mixhop



前言

单层GCN因为其本身的特性使得其只能使用一阶邻域的特征,尽管通过多层的叠加理论上可以获得较好的特征聚合,但也因此会产生拉普拉斯平滑,从而使模型的泛化能力变弱。通过学习一般的邻域混合关系,我们可以得到类似于多层GCN的泛化能力,本文提出的方法是Mixhop,该模型可以通过重复混合各种距离的邻居的特征表示来学习这些关系,包括差分算子。 MixHop不需要额外的内存或计算复杂性,并且在具有挑战性的基准上表现出色。

一、Introduction

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码匀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值