MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing
GitHub: github.com/samihaija/mixhop
前言
单层GCN因为其本身的特性使得其只能使用一阶邻域的特征,尽管通过多层的叠加理论上可以获得较好的特征聚合,但也因此会产生拉普拉斯平滑,从而使模型的泛化能力变弱。通过学习一般的邻域混合关系,我们可以得到类似于多层GCN的泛化能力,本文提出的方法是Mixhop,该模型可以通过重复混合各种距离的邻居的特征表示来学习这些关系,包括差分算子。 MixHop不需要额外的内存或计算复杂性,并且在具有挑战性的基准上表现出色。