LDA(线性判别分析)

introduction

lda原理
一个常见的LDA分类基本思想是假设各个类别的样本数据符合高斯分布,这样利用LDA进行投影后,可以利用极大似然估计计算各个类别投影数据的均值和方差,进而得到该类别高斯分布的概率密度函数。当一个新的样本到来后,我们可以将它投影,然后将投影后的样本特征分别带入各个类别的高斯分布概率密度函数,计算它属于这个类别的概率,最大的概率对应的类别即为预测类别。

model assumption

π k \pi_k πk: class k 的先验概率
∑ i = 1 k π k = 1 \sum_{i=1}^k\pi_k=1 i=1kπk=1
bayes theorem: p ( G = k ∣ X = x ) = π k f k ( x ) ∑ i = 1 k π k f k ( x ) p(G=k|X=x)=\frac{\pi_kf_k(x)}{\sum_{i=1}^k\pi_kf_k(x)} p(G=kX=x)=i=1kπkfk(x)πkfk(x)
f k ( x ) f_k(x) fk(x)Gauss distribution: f k ( x ) = 1 ( 2 π ) p / 2 ∣ Σ k ∣ 1 / 2 e x p ( − 1 2 ( x − μ k ) T Σ k − 1 ( x − μ k ) ) f_k(x)=\frac{1}{(2\pi)^{p/2}|\Sigma_k|^{1/2}}exp(-\frac{1}{2}(x-\mu_k)^T\Sigma_k^{-1}(x-\mu_k)) fk(x)=(2π)p/2Σk1/21exp(21(xμk)TΣk1(xμk))
Σ k = Σ \Sigma_k=\Sigma Σk=Σ

look at log ratio:
l o g ( p ( G = k ∣ X = x ) p ( G = l ∣ X = x ) ) = l o g π k π l − 1 2 ( μ l + μ k ) T Σ − 1 ( μ k − μ l ) + ( μ k − μ l ) Σ − 1 x log(\frac{p(G=k|X=x)}{p(G=l|X=x)})=log\frac{\pi_k}{\pi_l}-\frac{1}{2}(\mu_l+\mu_k)^T\Sigma^{-1}(\mu_k-\mu_l)+(\mu_k-\mu_l)\Sigma^{-1}x log(p(G=lX=x)p(G=kX=x))=logπlπk21(μl+μk)TΣ1(μkμl)+(μkμl)Σ1x

linear discriminant function

δ k ( x ) = x T σ − 1 μ k − 1 2 μ k T Σ − 1 μ k + l o g π k \delta_k(x)=x^T\sigma^{-1}\mu_k-\frac{1}{2}\mu_k^T\Sigma^{-1}\mu_k+log\pi_k δk(x)=xTσ1μk21μkTΣ1μk+logπk

parameter estimation

π ^ k = N K N \hat \pi_k=\frac{N_K}{N} π^k=NNK
μ ^ k = ∑ g i = k x i N K \hat \mu_k=\sum_{g_i=k}\frac{x_i}{N_K} μ^k=gi=kNKxi
Σ ^ = ∑ k = 1 K ∑ g i = k ( x i − μ ^ k ) T ( x i − μ ^ k ) / ( N − K ) \hat \Sigma=\sum_{k=1}^K\sum_{g_i=k}(x_i-\hat\mu_k)^T(x_i-\hat\mu_k)/(N-K) Σ^=k=1Kgi=k(xiμ^k)T(xiμ^k)/(NK)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值