1. 混合专家模型 (MoE) 与车载领域的差异
混合专家模型 (MoE) 概念:
- MoE 是一种优化大规模神经网络的技术,通常用于处理海量数据。它通过引入多个“专家”模块(即多个独立的神经网络),并通过一个门控网络选择在特定任务或输入数据上最合适的“专家”来处理。这种方式可以减少每次推理或训练所需的计算量,而保持模型的整体能力。
车载领域的特点:
- 资源限制:车载计算平台(如汽车中的自动驾驶芯片)通常具备有限的计算资源和存储带宽。这些平台往往依赖低功耗、高效率的设计,使用共享内存(如LPDDR5),并且显存容量有限,通常不超过32GB。
- 应用需求:车载领域的计算需求更多集中在实时处理、低延迟的任务上,比如图像处理、传感器数据融合和实时决策等。这些任务对模型的规模和复杂度有严格限制,不能像数据中心那样支持大规模、复杂的MoE架构。