自编R计算MSE(均方误差)

基本原理

1.生成关于x1~N(5,3),x2~N(100,10),error~N(0,1)
2.自己定一个实际对线性回归模型,并计算得到真实的y
y = 1.5+0.8x1+1.8x2+error
3.对x1,x2 进行线性拟合,当然这里也可以自写函数用最小二乘法原理,进行参数对估计
4.提取的每一个beta1,beta2
5.计算他的均方误差,计算公式

代码

k = 100000 # 定义实验次数
beta_x1 = c() # 定义空列
beta_x2 = c()
for (i in 1:k) {
  beta1 = 0.8 # 设置真实系数
  beta2 = 1.8
  x1 = rnorm(100,5,3) # 产生随机数
  x2 = rnorm(100,100,10)
  error = rnorm(100,0,1) # 产生随机误差
  y = 1.5+0.8*x1+1.8*x2+error
  data1 = data.frame(x1,x2,y) # 构建数据框
  res = lm(y~x1+x2,data = data1)
  res = summary(res)
  beta1_r = (res$coefficients[2]-beta1)^2 # 取估计的系数
  beta2_r = (res$coefficients[3]-beta2)^2
  beta_x1 = c(beta_x1,beta1_r) # 追加成向量
  beta_x2 = c(beta_x2,beta2_r)
  
}
MSEx1 = sum(beta_x1)/length(beta_x1) # 求MES的公式
MSEx2 = sum(beta_x2)/length(beta_x2)
message('x1的MES为:',MSEx1)
message('x2的MES为:',MSEx2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wency(王斯-CUEB)

我不是要饭的

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值