常见概率分布总结

离散型

两点分布 B ( 1 , θ ) B(1,\theta) B1,θ

f ( x ; θ ) = P θ ( X = x ) = θ x ( 1 − θ ) 1 − θ , x = 0 , 1 f(x;\theta)=P_\theta(X=x)=\theta^x(1-\theta)^{1-\theta} , x=0,1 f(x;θ)=Pθ(X=x)=θx(1θ)1θ,x=0,1
期望: E ( X ) = θ E(X)=\theta E(X)=θ
方差: D ( X ) = θ ( 1 − θ ) D(X)=\theta(1-\theta) D(X)=θ(1θ)

特性:当Xi服从B(1, θ \theta θ)那么 ∑ j = 1 n X j 服 从 B ( n , θ ) \sum_{j=1}^{n}X_j服从B(n,\theta) j=1nXjB(n,θ)

二项分布 B ( n , θ ) B(n,\theta) Bn,θ

f ( x ; θ ) = P θ ( X = x ) = ( k n ) θ x ( 1 − θ ) n − θ , x = 0 , 1 , , , , n ; 0 < θ < 1 f(x;\theta)=P_\theta(X=x)=(_{k}^{n})\theta^x(1-\theta)^{n-\theta} , x=0,1,,,,n;0<\theta<1 f(x;θ)=Pθ(X=x)=(kn)θx(1θ)nθ,x=0,1,,,,n;0<θ<1
期望: E ( X ) = n θ E(X)=n\theta E(X)=nθ
方差: D ( X ) = n θ ( 1 − θ ) D(X)=n\theta(1-\theta) D(X)=nθ(1θ)
众数: M o d e ( X ) = ( n − 1 ) θ Mode(X)=(n-1)\theta Mode(X)=(n1)θ
特性:关于n的可再生性

泊松分布 P ( λ ) P(\lambda) Pλ

f ( x ; λ ) = P λ ( X = x ) = e − λ λ x x ! , x = 0 , 1 , , , , ; λ > 0 f(x;\lambda)=P_\lambda(X=x)=\frac{e^{-\lambda}\lambda^x}{x!} , x=0,1,,,,;\lambda>0 f(x;λ)=Pλ(X=x)=x!eλλx,x=0,1,,,,;λ>0
期望: E ( X ) = λ E(X)=\lambda E(X)=λ
方差: D ( X ) = λ D(X)=\lambda D(X)=λ
众数: M o d e ( X ) = λ Mode(X)=\lambda Mode(X)=λ

特性:当Xi服从P(\lambda)那么 ∑ j = 1 n X j 服 从 P ( n λ ) \sum_{j=1}^{n}X_j服从P(n\lambda) j=1nXjPnλ

几何分布 G e ( θ ) Ge(\theta) Geθ

f ( x ; θ ) = P θ ( X = x ) = θ ( 1 − θ ) x − 1 , x = 1 , 2 , 3 , , , ; 0 < θ < 1 f(x;\theta)=P_\theta(X=x)=\theta(1-\theta)^{x-1} , x=1,2,3,,,;0<\theta<1 f(x;θ)=Pθ(X=x)=θ(1θ)x1,x=1,2,3,,,;0<θ<1
期望: E ( X ) = 1 θ E(X)=\frac {1} {\theta} E(X)=θ1
方差: D ( X ) = ( 1 − θ ) θ 2 D(X)=\frac {(1-\theta)} {\theta^2} D(X)=θ2(1θ)

特性:当Xi服从Ge( θ \theta θ)那么 ∑ j = 1 n X j 服 从 N b ( n , θ ) \sum_{j=1}^{n}X_j服从Nb(n,\theta) j=1nXjNb(n,θ)无记忆性

负二项分布 N b ( r , θ ) Nb(r,\theta) Nb(r,θ)

f ( x ; θ ) = P θ ( X = x ) = ( r − 1 x − 1 ) θ r ( 1 − θ ) x − r , x = r , r + 1 , r + 2 , , , , ; 0 < θ < 1 f(x;\theta)=P_\theta(X=x)=(_{r-1}^{x-1})\theta^r(1-\theta)^{x-r} , x=r,r+1,r+2,,,,;0<\theta<1 f(x;θ)=Pθ(X=x)=(r1x1)θr(1θ)xr,x=r,r+1,r+2,,,,;0<θ<1
期望: E ( X ) = r θ E(X)=\frac {r} {\theta} E(X)=θr
方差: D ( X ) = r ( 1 − θ ) θ 2 D(X)=\frac {r(1-\theta)} {\theta^2} D(X)=θ2r(1θ)

特性:r有再生性

连续型

正态分布 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)

f ( x ; θ ) = 1 2 π σ e x p { − ( x − μ ) 2 2 σ 2 } f(x;\theta)=\frac{1}{\sqrt{2\pi}\sigma}exp\{-\frac{(x-\mu)^2}{2\sigma^2}\} f(x;θ)=2π σ1exp{2σ2(xμ)2}
期望: E ( X ) = μ E(X)=\mu E(X)=μ
方差: D ( X ) = σ 2 D(X)=\sigma^2 D(X)=σ2
众数: M o d e ( X ) = μ Mode(X)=\mu Mode(X)=μ

多元正态分布 N p ( μ , σ 2 ) N_p(\mu,\sigma^2) Np(μ,σ2)

f ( x ; θ ) = ( 2 π ) − p 2 ∣ Σ ∣ − 1 2 e x p { − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) } f(x;\theta)=(2\pi)^{-\frac{p}{2}}|\varSigma|^{-\frac{1}{2}}exp\{-\frac{1}{2}(x-\mu)^T\varSigma^{-1}(x-\mu)\} f(x;θ)=(2π)2pΣ21exp{21(xμ)TΣ1(xμ)}
期望: E ( X ) = μ E(X)=\mu E(X)=μ
方差: D ( X ) = Σ D(X)=\varSigma D(X)=Σ
众数: M o d e ( X ) = μ Mode(X)=\mu Mode(X)=μ

均匀分布U ( θ 1 , θ 2 ) (\theta_1,\theta_2) (θ1,θ2)

f ( x ; θ ) = 1 θ 1 − θ 2 , θ 1 < θ 2 ⊆ R f(x;\theta)=\frac{1}{\theta_1-\theta_2} ,\theta_1<\theta_2\subseteq\R f(x;θ)=θ1θ21,θ1<θ2R
期望: E ( X ) = θ 1 + θ 2 2 E(X)=\frac{\theta_1+\theta_2}{2} E(X)=2θ1+θ2
方差: D ( X ) = ( θ 2 − θ 1 ) 2 12 D(X)=\frac{(\theta_2-\theta_1)^2}{12} D(X)=12(θ2θ1)2

指数分布Exp ( λ ) ( \lambda) λ

f ( x ; λ ) = λ e − λ x , λ > 0 f(x;\lambda)=\lambda e^{-\lambda x},\lambda>0 f(x;λ)=λeλx,λ>0
期望: E ( X ) = 1 λ E(X)=\frac{1}{\lambda} E(X)=λ1
方差: D ( X ) = 1 λ 2 D(X)=\frac{1}{\lambda^2} D(X)=λ21

众数: M o d e ( X ) = 0 Mode(X)=0 Mode(X)=0

伽马分布

f ( x ; r , λ ) = λ r Γ ( r ) x r − 1 e − λ x f(x;r,\lambda)=\frac{\lambda^r}{\Gamma(r)}x^{r-1}e^{-\lambda x} f(x;r,λ)=Γ(r)λrxr1eλx
期望: E ( X ) = r λ E(X)=\frac{r}{\lambda} E(X)=λr
方差: D ( X ) = r λ 2 D(X)=\frac{r}{\lambda^2} D(X)=λ2r

众数: M o d e ( X ) = r − 1 λ Mode(X)=\frac{r-1}{\lambda} Mode(X)=λr1

逆伽马分布

f ( x ; r , λ ) = λ r Γ ( r ) x − ( r + 1 ) e − λ x f(x;r,\lambda)=\frac{\lambda^r}{\Gamma(r)}x^{-(r+1)}e^{-\frac{\lambda}{x}} f(x;r,λ)=Γ(r)λrx(r+1)exλ
期望: E ( X ) = λ r − 1 E(X)=\frac{\lambda}{r-1} E(X)=r1λ
方差: D ( X ) = λ 2 ( r − 1 ) 2 ( r − 2 ) D(X)=\frac{\lambda^2}{(r-1)^2(r-2)} D(X)=(r1)2(r2)λ2

众数: M o d e ( X ) = λ r + 1 Mode(X)=\frac{\lambda}{r+1} Mode(X)=r+1λ

贝塔分布 B e ( α , β ) Be(\alpha,\beta) Be(α,β)

f ( x ; r , λ ) = Γ ( α + β ) Γ ( α ) Γ ( β ) x α − 1 ( 1 − x ) β − 1 f(x;r,\lambda)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1} f(x;r,λ)=Γ(α)Γ(β)Γ(α+β)xα1(1x)β1
期望: E ( X ) = α α + β E(X)=\frac{\alpha}{\alpha+\beta} E(X)=α+βα
方差: D ( X ) = α β ( α + β ) 2 ( α + β + 1 ) D(X)=\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)} D(X)=(α+β)2(α+β+1)αβ

众数: M o d e ( X ) = α − 1 α + β − 2 Mode(X)=\frac{\alpha-1}{\alpha+\beta-2} Mode(X)=α+β2α1

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wency(王斯-CUEB)

我不是要饭的

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值