【AI知识点】正则化(Regularization)

【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】


正则化(Regularization) 是机器学习和统计学中的一种技术,用于防止模型过拟合。在训练模型时,模型可能会过度拟合训练数据,导致在新数据上的表现较差。正则化通过在优化过程中引入额外的约束或惩罚项,使模型更简单、泛化能力更强,从而避免过拟合。

1. 过拟合问题的背景

过拟合(Overfitting) 发生在模型在训练数据上表现得非常好,但在测试数据上表现不佳时。原因是模型学到了数据中的噪声或随机波动,而不是数据的基本模式。这通常发生在模型过于复杂时,比如当模型的参数过多,或者模型训练的迭代次数过多。

过拟合的表现通常是:

  • 训练集误差很小,模型在训练集上表现很好。
  • 测试集误差较大,模型在新数据上表现较差。

为了解决这个问题,我们可以通过正则化来限制模型的复杂度,使其更好地泛化到新数据上。


2. 正则化的基本原理

正则化通过在损失函数中引入一个额外的惩罚项,来限制模型的复杂度,防止模型过度拟合训练数据。正则化会迫使模型的参数变小(接近于零),从而使得模型更加平滑,避免复杂的参数设置。

目标函数的通用形式为:

目标函数 = 原始损失函数 + λ ⋅ 正则化项 \text{目标函数} = \text{原始损失函数} + \lambda \cdot \text{正则化项} 目标函数=原始损失函数+λ正则化项

其中:

  • 原始损失函数:例如,线性回归中的均方误差 (MSE)。
  • 正则化项:通常是模型参数的某种形式的范数(如 L1 或 L2 范数)。
  • λ \lambda λ:正则化强度的超参数,控制正则化项的影响大小。当 λ = 0 \lambda = 0 λ=0 时,没有正则化;当 λ \lambda λ 较大时,正则化项的影响变强。

3. 常见的正则化方法

a. L2 正则化(Ridge 回归,岭回归)

L2 正则化 是一种常见的正则化技术,它在损失函数中加入参数的平方和作为惩罚项。具体来说,L2 正则化会通过惩罚模型参数的平方和来限制模型的参数值。

对于线性回归问题,L2 正则化的目标函数为:

J ( θ ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 + λ ∑ j = 1 n θ j 2 J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left( h_\theta(x^{(i)}) - y^{(i)} \right)^2 + \lambda \sum_{j=1}^{n} \theta_j^2 J(θ)=2m1i=1m(hθ(x(i))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值