统计信号处理基础 习题解答3-3

本文探讨了在特定条件下参数A的有效估计及其方差下界(CRLB)的求解过程。通过给出观测样本的概率分布及似然函数,逐步推导出CRLB表达式,并证明了该估计量为最小方差无偏估计(MVU)。同时讨论了当样本容量趋向无穷大时,不同参数值对方差的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

观测到数据:

 其中 是具有方差 的WGN,r>0,且是已知的。求A的CRLB,证明有效估计量存在,并求它的方差。对于不同的r值,当N趋于无穷大时,方差会怎样?


解答:

根据题目条件,可以得到:

详细求解过程为:

第一步:得到观察量的概率分布函数 

第二步:得到观察量相关的似然函数

 第三步:对似然函数取对数:

第四步:对取对数后的似然函数求一阶导数,得到:

第五步:对取对数后的似然函数求二阶导数,得到:

 第六步:对二阶导数求数学期望,得到:

因此,估计量 的CRLB可以表示为:

由于似然函数的一阶导数可以进一步表示为:

也就是可以表示成(3.7)的形式,其中:

因此:

是MVU估计量,其方差为:


当N趋近于无穷大时,如果 ,那么

 此时

 而如果 时,存在:

此时


另外,上述六步求CRLB的过程,也可以直接采用(3.14)结论:

此时:

那么

因此,直接带入(3.14),得到:

与上述过程一致,但更加简单高效。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值