统计信号处理基础 习题解答10-5

题目

通过令

并进行计算来重新推导MMSE估计量。提示:利用结果

解答

首先需要明确的是:

上式是关于观测值x 的函数


其次需要说明一下这个结果

和教材一样,我们用求期望,需要注意的是,在贝叶斯情况下,是个随机变量,而不是一个确定的值:

其中:

上式是X=x条件下的函数,因此是x的函数,于无关

因此,也就是得到了

或者更加通俗一点:


下面开始证明:

其中:

上式中x等参数的函数,但已经对θ完成了一次积分,所以肯定不是θ的函数。另外是个估计量,在观察数据x等参数等参数明确情况下具有确定值,也不是θ的函数,因此:

上面又用到了中不包含θ,且

而对比,又得到:

因此:

把上面结果带入到中,得到:

上式中,都是大于等于0的项,因此,如果要使得最小,那么用户可以选择估计量,使得:

在这个情况下:

此时,达到最小值,即:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值