题目
通过令
并进行计算来重新推导MMSE估计量。提示:利用结果
解答
首先需要明确的是:
上式是关于观测值x 的函数
其次需要说明一下这个结果
和教材一样,我们用求期望,需要注意的是,在贝叶斯情况下,是个随机变量,而不是一个确定的值:
其中:
上式是X=x条件下的函数,因此是x的函数,于无关
而
因此,也就是得到了
或者更加通俗一点:
下面开始证明:
其中:
上式中是x等参数的函数,但已经对θ完成了一次积分,所以肯定不是θ的函数。另外是个估计量,在观察数据x等参数等参数明确情况下具有确定值,也不是θ的函数,因此:
而
上面又用到了中不包含θ,且
而对比,又得到:
因此:
把上面结果带入到中,得到:
上式中,和都是大于等于0的项,因此,如果要使得最小,那么用户可以选择估计量,使得:
在这个情况下:
此时,达到最小值,即: