【课程笔记01】数字信号处理

自用,个人课程笔记

Fourier变换是虚轴上的Laplace变换
s = σ + j ω s=\sigma +j\omega s=σ+
z = e s T z=e^{sT} z=esT

周期信号的判断

  1. 周期信号与周期信号的叠加不一定是周期信号
  2. s i n ( t ) sin(t) sin(t)为周期信号,周期为2 π \pi π
    s i n ( n ) sin(n) sin(n)不为周期信号,找不到N满足 s i n ( n + m N ) = s i n ( n ) sin(n+mN)=sin(n) sin(n+mN)=sin(n),m为整数
    s i n ( π n 4 ) sin(\frac{\pi n}{4}) sin(4πn)是周期信号, s i n ( π 4 ( n + 8 m ) ) = s i n ( n ) sin(\frac{\pi}{4}(n+8m))=sin(n) sin(4π(n+8m))=sin(n)
    对正弦函数的采样周期需要是 2 π 2\pi 2π的整数倍(正弦序列不一定是周期信号)

功率信号和能量信号

能量有限信号: E = ∫ − ∞ + ∞ ∣ x ( t ) ∣ 2 d t E = \int_{-\infty}^{+\infty}|x(t)|^2dt E=+x(t)2dt
能量有限信号: P = lim ⁡ T → ∞ 1 T ∫ − T / 2 T / 2 ∣ x ( t ) ∣ 2 d t P={ \lim_{T \to \infty} } \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2dt P=limTT1T/2T/2x(t)2dt
斜坡信号既不是功率有限信号也不是能量有限信号

时不变特性

  • 例题: y ( t ) = x ( − t ) y(t)=x(-t) y(t)=x(t)系统的作用为对输入进行翻转
  1. 输入时移 x ( t − t 0 ) x(t-t_{0}) x(tt0),系统输出为 x ( − t − t 0 ) x(-t-t_{0}) x(tt0) ,即 y ( t + t 0 ) y(t+t_{0}) y(t+t0)系统只对t进行操作
  2. 而输出时移应为 y ( t − t 0 ) = x ( − ( t − t 0 ) ) = x ) ( − t + t 0 ) y(t-t_{0})=x(-(t-t_{0}))=x)(-t+t_{0}) y(tt0)=x((tt0))=x)(t+t0)
    从而不为时不变系统,并非数学上的变量替换
  • 例题 y ( n ) = n x ( n ) y(n)=nx(n) y(n)=nx(n)也不为时不变系统。
    因为输入 x ( n − n 0 ) x(n-n_{0}) x(nn0)时,输出为 n x ( n − n 0 nx(n-n_{0} nx(nn0,不等于 y ( n − n 0 ) y(n-n_{0}) y(nn0)

  • 连续时不变系统可以用常系数微分方程表示

  • 离散时不变系统可以用常系数差分方程表示

线性

  • 齐次(倍乘)
  • 可加
  • 可分解性(零输入和零状态)
    • 零输入线性?将 x ( t ) = 0 x(t)=0 x(t)=0,则剩余的 y ( t ) y(t) y(t)为0输入响应
      y ( t ) = 2 x ( t ) + 3 y(t)=2x(t)+3 y(t)=2x(t)+3,零输入为 y ( t ) z e r o i n p u t = 3 y(t)_{zero input}=3 y(t)zeroinput=3,并非线性
    • 零状态线性? 减去零输入
      y ( t ) z e r o s t a t e = 2 x ( t ) y(t)_{zero state}=2x(t) y(t)zerostate=2x(t),为线性的值

稳定系统

  • 有界输入对应有界输出
  • 充要条件:单位冲激响应绝对可积
    ∫ − ∞ + ∞ ∣ h ( t ) ∣ d t < − ∞ \int_{-\infty}^{+\infty} |h(t)|dt<-\infty +h(t)dt<
  • 因果系统稳定的条件:极点全部位于左半平面(z平面单位圆内部)

系统的分类:因时线连记稳。。。(因为时间线连记忆都稳定了)
因果与非因果;时不变与时变;线性与非线性;连续与离散;记忆与非记忆;稳定与不稳定

狄利克雷条件

狄利克雷(1805~1859),德国数学家。

是一个信号存在傅里叶变换的充分不必要条件。
狄利克雷条件括三方面:

  1. 在一周期内,连续或只有有限个第一类间断点;
    可去间断点和跳跃间断点属于第一类间断点。(左极限和右极限都存在)
  2. 在一周期内,极大值和极小值的数目应是有限个;
  3. 在一周期内,信号是绝对可积的。

其他科学家

  1. 奈奎斯特(1889-1976),美国物理学家。1917年获得耶鲁大学工学博士学位。曾在美国AT&T公司与贝尔实验室任职。

傅里叶变换FT(Fourier Transform)

  • t t t连续对应 ω \omega ω无穷
    X ( e j Ω ) = ∫ − ∞ + ∞ f ( t ) e − j Ω t d t X(e^{j \Omega}) = \int_{-\infty}^{+\infty}f(t)e^{-j\Omega t}dt X(ejΩ)=+f(t)ejΩtdt

连续时间复指数信号等

  1. 复指数信号: e s t e^{st} est
    s = σ + j ω s = \sigma +j\omega s=σ+

  2. 阶跃信号(单边特性)
    u ( t ) = 1 , t ≥ 0 , e l s e , u ( t ) = 0 u(t) = 1, t\geq 0 , else, u(t)=0 u(t)=1,t0,else,u(t)=0
    符号函数: s g n ( t ) = 1 ( − 1 ) , t > 0 ( < 0 ) sgn(t) = 1(-1), t \gt 0(\lt 0) sgn(t)=1(1),t>0(<0)
    s g n ( t ) = u ( t ) − u ( − t ) = 2 u ( t ) − 1 sgn(t) = u(t)-u(-t) = 2u(t)-1 sgn(t)=u(t)u(t)=2u(t)1

  3. 冲激函数 δ ( t ) = 0 \delta (t) = 0 δ(t)=0

  • 筛选性质: x ( t ) δ ( t ) = x ( 0 ) δ ( t ) x(t)\delta(t)=x(0)\delta(t) x(t)δ(t)=x(0)δ(t)(x(0)为面积)

  • 取样性质: ∫ − ∞ + ∞ x ( t ) δ ( t ) = x ( 0 ) \int_{-\infty}^{+\infty}x(t)\delta(t)=x(0) +x(t)δ(t)=x(0)

  • 展缩性质: δ ( a t + b ) = 1 ∣ a ∣ δ ( t + b / a ) \delta(at+b) = \frac{1}{|a|}\delta (t+b/a) δ(at+b)=a1δ(t+b/a):冲激信号是偶函数

    • 证明: 根据冲激函数的取样性质进行
    • ∫ − ∞ + ∞ δ ( a t + b ) ϕ ( t ) d t ⟶ a t + b = P , a > 0 ∫ − ∞ + ∞ δ ( P ) ϕ ( P − b a ) d ( P − b a ) = ∫ − ∞ + ∞ 1 a δ ( P ) ϕ ( P − b a ) d P = 1 a ϕ ( − b a ) \int_{-\infty}^{+\infty} \delta(at+b)\phi(t)dt\stackrel{at+b = P, a >0}{\longrightarrow} \int_{-\infty}^{+\infty} \delta(P)\phi(\frac{P-b}{a})d(\frac{P-b}{a})= \int_{-\infty}^{+\infty}\frac{1}{a}\delta(P)\phi(\frac{P-b}{a})dP =\frac{1}{a}\phi(\frac{-b}{a}) +δ(at+b)ϕ(t)dtat+b=P,a>0+δ(P)ϕ(aPb)d(aPb)=+a1δ(P)ϕ(aPb)dP=a1ϕ(ab)
      最后一个等式中,可以看成 δ ( P + 0 ) \delta(P+0) δ(P+0)在与 ϕ \phi ϕ函数进行取样,从而零 ϕ \phi ϕ中的P等于0
      小于0时同理,积分上下限需要改变符号。因此a有绝对值
  • 冲激信号微分积分性质:

    1. ∫ − ∞ t δ ( τ ) d τ = u ( t ) \int_{-\infty}^{t}\delta(\tau)d\tau=u(t) tδ(τ)dτ=u(t)
    2. ∫ − ∞ t u ( τ ) d τ = t u ( t ) \int_{-\infty}^{t}u(\tau)d\tau=tu(t) tu(τ)dτ=tu(t)(斜坡信号)
    3. d δ ( t ) d t = δ ′ ( t ) \frac{d\delta(t)}{dt}=\delta^{'}(t) dtdδ(t)=δ(t)(冲激偶函数)
  • 奇异信号:所有从单位冲激信号导出的这些信号统称为奇异信号

s平面和z平面的关系

  • s平面: s = σ + j ω s=\sigma +j\omega s=σ+ x ( t ) = e s t = e ( σ + j ω ) t = e σ t e j ω t x(t)=e^{st} = e^{(\sigma +j\omega)t}=e^{\sigma t}e^{j\omega t} x(t)=est=e(σ+)t=eσtet
  • s平面为直角坐标系,横坐标 σ \sigma σ,纵坐标 j ω j\omega
  • z平面: z = r e j Ω z=re^{j\Omega} z=rejΩ x ( n ) = z n x(n)=z^{n} x(n)=zn
  • z平面为极坐标系,长度r,角度 Ω \Omega Ω
  1. 令t=nT对x(t)进行采样, x ( t ) = e σ n T e j ω n T x(t)=e^{\sigma nT}e^{j\omega nT} x(t)=eσnTejωnT
  2. 确定采样频率, T = 2 π ω s T= \frac{2\pi}{\omega _{s}} T=ωs2π
  3. x ( n ) = e σ n 2 π ω s e j ω n 2 π ω s x(n)=e^{\sigma n \frac{2\pi}{\omega _{s}}} e^{j\omega n \frac{2\pi}{\omega _{s}} } x(n)=eσnωs2πejωnωs2π
  4. s域变量 σ \sigma σ ω \omega ω,z域的变量r, Ω \Omega Ω
    • r = e σ n 2 π ω s r=e^{\sigma n \frac{2\pi}{\omega _{s}}} r=eσnωs2π e j n ω 2 π ω s e^{jn \omega \frac{2\pi}{\omega _{s}}} ejnωωs2π
    • 角度为 n ω 2 π ω s n \omega \frac{2\pi}{\omega _{s}} ωs2π
    1. 对于s左半平面, σ < 0 \sigma <0 σ<0时, x ( t ) = e s t x(t)=e^{st} x(t)=est衰减,x(n)的r<1,即在z平面单位圆内部,此时如果让 n ω 2 π ω s n \omega \frac{2\pi}{\omega _{s}} ωs2π为(0, 2 π 2\pi 2π),则 ω ∈ ( 0 , w s ) \omega \in (0,w_{s}) ω(0,ws)时,完整对应z平面的角度, ω \omega ω再向上或者向下平移也对应的是z平面单位圆内部,s左半平面对应单位圆内部,为多对1的关系。
    2. 对于s右半平面,对应单位圆外部
    3. s平面的 j ω j\omega 轴对应z平面的长度为1,即对应单位圆。例如s的原点, ω = 0 \omega =0 ω=0 ,z平面角度为0, σ = 0 \sigma =0 σ=0,长度为1,从而原点对应z平面(0,1)的位置在单位圆上。
    4. s平面的实轴, ω = 0 \omega =0 ω=0,对应的是z平面的角度为0, σ 不一定时 \sigma不一定时 σ不一定时对应长度不一定,从而实轴为z平面的横坐标的右半部分

Sa函数

S a ( t ) = s i n ( t ) t Sa(t)= \frac{sin(t)}{t} Sa(t)=tsin(t)

  1. 偶函数
  2. t=k π \pi π时,sa(t)=0
  3. t=0时,sa(t)=1
  4. 负无穷到正无穷上积分为 π \pi π

门函数的频谱为Sa函数

频谱

  1. 偶函数的频谱是偶函数,奇函数的频谱是奇函数

    • 证明:
    • 偶函数: x ( t ) = x ( − t ) x(t)=x(-t) x(t)=x(t)
    • 对于x(t): X ( j ω ) = ∫ − ∞ + ∞ x ( t ) e − j ω t d t X(j\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t}dt X()=+x(t)etdt
    • 对于x(-t): X ( − j ω ) = ∫ − ∞ + ∞ x ( t ) e j ω t d t X(-j\omega)=\int_{-\infty}^{+\infty}x(t) e^{j\omega t}dt X()=+x(t)etdt
    • 变量替换: t = − τ t=-\tau t=τ
    • 从而 X ( − j ω ) = ∫ + ∞ − ∞ x ( − τ ) e j ω ( − τ ) d ( − τ ) X(-j\omega)=\int_{+\infty}^{-\infty} x(-\tau)e^{j\omega (-\tau)} d(-\tau) X()=+x(τ)e(τ)d(τ)
    • ⟹ \Longrightarrow X ( − j ω ) = ∫ − ∞ + ∞ x ( τ ) e − j ω τ d τ = X ( j ω ) X(-j\omega) = \int_{-\infty}^{+\infty}x(\tau)e^{-j\omega \tau}d\tau =X(j\omega) X()=+x(τ)eτdτ=X()从而得证频谱为偶函数

    • 实信号(共轭相等): x ( t ) = x ∗ ( t ) x(t)=x^*(t) x(t)=x(t) X ( j ω ) = X ∗ ( − j ω ) X(j\omega) =X^*(-j\omega) X()=X() 先取负,再取共轭
    • 证明:
    • x ∗ ( t ) x^*(t) x(t)的频谱,如果等于 X ∗ ( − j ω ) X^*(-j\omega) X(),则得到证明
    • ∫ − ∞ + ∞ x ∗ ( t ) e − j ω t d t ⟹ [ ∫ − ∞ + ∞ x ( t ) e j ω t d t ] ∗ = X ∗ ( − j ω ) \int_{-\infty}^{+\infty} x^*(t)e^{-j\omega t}dt {\Longrightarrow} [\int_{-\infty}^{+\infty}x(t)e^{j\omega t} dt]^* =X^*(-j\omega) +x(t)etdt[+x(t)etdt]=X()
    • 证明结束

  2. 实信号:

    • 模值为偶函数,角度为奇函数(根据 X ( j ω ) = X ∗ ( − j ω ) X(j\omega) =X^*(-j\omega) X()=X()证明)
    • X ( j ω ) = R e [ X ( j ω ) ] + j I m [ X ( j ω ) ] X(j\omega) = Re[X(j\omega)] + jIm[X(j\omega)] X()=Re[X()]+jIm[X()]
    • X ∗ ( − j ω ) = R e [ X ( − j ω ) ] − j I m [ X ( − j ω ) ] X^*(-j\omega)=Re[X(-j\omega) ]-jIm[X(-j\omega)] X()=Re[X()]jIm[X()]
    • 以上两式相等,实部等于实部,虚部等于虚部
    • 模值= R e 2 + I m 2 \sqrt{Re^2 +Im^2} Re2+Im2 为偶函数
    • 角度 a r c t a n ( I m R e ) arctan(\frac{Im}{Re}) arctan(ReIm)从而为奇函数
  3. 如果既是实信号 X ( j ω ) = X ∗ ( − j ω ) X(j\omega) =X^*(-j\omega) X()=X()
    又是偶函数,频谱为偶函数 X ( j ω ) = X ( − j ω ) X(j\omega) =X(-j\omega) X()=X()

    • 实偶函数 X ∗ ( − j ω ) = X ( − j ω ) X^*(-j\omega)=X(-j\omega) X()=X(),因此实偶函数虚部为0,从而角度也为0
    • 实偶函数频谱为实偶函数
    • 实奇函数 X ∗ ( − j ω ) = − X ( − j ω ) X*(-j\omega)=-X(-j\omega) X()=X(),因此虚部为0,从而角度为 π / 2 \pi/2 π/2
    • 实奇函数频谱为虚奇函数
  4. 对称性质(定义本质):或者写为: 2 π x ( − ω ) = X ( j t ) 2 \pi x(-\omega)=X(jt) 2πx(ω)=X(jt) x ( t ) ↔ X ( ω ) ⟹ X ( t ) = 2 π x ( − ω ) x(t) \leftrightarrow X(\omega) \Longrightarrow X(t)=2\pi x(-\omega) x(t)X(ω)X(t)=2πx(ω)

    • 证明: 2 π x ( − ω ) = X ( j t ) 2 \pi x(-\omega)=X(jt) 2πx(ω)=X(jt)
    • x ( − ω ) x(-\omega) x(ω)下手: x ( − t ) = 1 2 π ∫ − ∞ + ∞ X ( j ω ) e − j w t d w x(-t)=\frac{1}{2\pi} \int_{-\infty}^{+\infty}X(j\omega)e^{-jwt}dw x(t)=2π1+X()ejwtdw
    • t = ω t=\omega t=ω: x ( − ω ) = 1 2 π ∫ − ∞ + ∞ X ( j t ) e − j w t d t x(-\omega)=\frac{1}{2\pi} \int_{-\infty}^{+\infty}X(jt)e^{-jwt}dt x(ω)=2π1+X(jt)ejwtdt (这里是为什么?)
    • 或许可以将 X ( j ω ) d ω X(j\omega)d\omega X()dω看成是幅值, e − j ω t e^{-j\omega t} et看成角度,实际上 ω \omega ω t t t等价?
  5. 时频展缩特性 x ( a t ) ↔ 1 ∣ a ∣ X ( j ω / a ) x(at) \leftrightarrow \frac{1}{|a|}X(j\omega/a) x(at)a1X(/a),可以参考 δ ( a t + b ) = 1 ∣ a ∣ δ ( t + b / a ) \delta(at+b) = \frac{1}{|a|}\delta (t+b/a) δ(at+b)=a1δ(t+b/a)

    • 相当于时域越宽,则频域越窄
    • x ( − t ) = X ( − j ω ) x(-t)=X(-j \omega) x(t)=X()
  6. 时移特性 x ( t + t 0 ) ↔ X ( j ω ) e j ω t 0 x(t+t0) \leftrightarrow X(j\omega)e^{j \omega t_{0}} x(t+t0)X()et0 (定义与变量替换证明)

    • 只是影响了相位
    • x ( t + b ) − > X ( j ω ) e j ω b x(t+b) -> X(j\omega)e^{j\omega b} x(t+b)>X()ejωb
    • x ( a t + b ) − > 1 ∣ a ∣ X ( j ω / a ) e j w b / a x(at+b) -> \frac{1}{|a|}X(j\omega /a)e^{jwb/a} x(at+b)>a1X(/a)ejwb/a
  7. 频移 x ( t ) e j w 0 t ↔ X ( j ( w − w 0 ) ) x(t)e^{jw_{0}t} \leftrightarrow X(j(w-w_{0})) x(t)ejw0tX(j(ww0))

  8. 微分特性 x n ′ ( t ) = ( j w ) n X ( j w ) x^{n'}(t)=(jw)^{n}X(jw) xn(t)=(jw)nX(jw)定义求解

  9. 频域微分特性 t x ( t ) ↔ j d X ( j w ) / d w tx(t) \leftrightarrow jdX(jw)/dw tx(t)jdX(jw)/dw

常见傅里叶变换求解

  1. δ ( t ) ↔ 1 \delta(t) \leftrightarrow 1 δ(t)1
    ∫ δ ( t ) e − j ω t = e − j w 0 = 1 \int_{}^{}\delta(t)e^{-j\omega t}=e^{-jw0}=1 δ(t)et=ejw0=1
  2. 1 ↔ 2 π d e l t a ( w ) 1 \leftrightarrow 2\pi delta(w) 12πdelta(w),根据对称性质求解 2 π δ ( − ω ) = 2 π δ ( ω ) 2\pi \delta(-\omega)=2\pi \delta(\omega) 2πδ(ω)=2πδ(ω)
    2 π x ( − ω ) ↔ X ( t ) 2\pi x(-\omega) \leftrightarrow X(t) 2πx(ω)X(t)
    2 π δ ( − ω ) ↔ 1 2\pi \delta(-\omega) \leftrightarrow 1 2πδ(ω)1
  3. e − a t u ( t ) e^{-at}u(t) eatu(t)
    • X ( j ω ) = ∫ 0 + ∞ e − a t e − j ω t d t = e − ( a + j ω ) t − ( a + j ω ) ∣ 0 + ∞ = 1 a + j ω X(j\omega)=\int_{0}^{+\infty} e^{-at}e^{-j\omega t}dt =\frac{e^{-(a+j\omega)t}}{-(a+j\omega)}|_{0}^{+\infty}=\frac{1}{a+j\omega} X()=0+eatetdt=(a+)e(a+)t0+=a+1
  4. s g n ( t ) ↔ 2 / ( j ω ) sgn(t) \leftrightarrow 2/(j \omega) sgn(t)2/() (实奇函数对应虚奇频谱,化为u(t)相减的形式求解)
    • s g n ( t ) = lim ⁡ a − > 0 [ e − a t u ( t ) − e a t u ( − t ) ] sgn(t)=\lim_{a->0} [e^{-at}u(t) -e^{at}u(-t)] sgn(t)=lima>0[eatu(t)eatu(t)]
  5. e j w 0 t e^{jw_{0}t} ejw0t,根据对称与频移特性求解
    • 1 ↔ 2 π δ ( w ) 1 \leftrightarrow 2\pi \delta(w) 12πδ(w)
    • 频移: e j w 0 t = 2 π δ ( w − w 0 ) e^{jw_{0}t} =2\pi \delta(w-w_{0}) ejw0t=2πδ(ww0)
  6. c o s ( w 0 t ) cos(w_{0}t) cos(w0t)
    • 欧拉公式与 e j w 0 t e^{jw_{0}t} ejw0t求解
    • c o s ( w 0 t ) = 1 / 2 ( e j w 0 t + e − j w 0 t ) cos(w_{0}t)=1/2(e^{jw_{0}t}+e^{-jw_{0}t}) cos(w0t)=1/2(ejw0t+ejw0t)
    • c o s ( w 0 t ) = π δ ( w − w 0 ) + π δ ( w + w 0 ) cos(w_{0}t)=\pi \delta(w-w_{0})+\pi \delta(w+w_{0}) cos(w0t)=πδ(ww0)+πδ(w+w0)
  7. s i n ( w 0 t ) sin(w_{0}t) sin(w0t)
    • j π δ ( w + w 0 ) − j π δ ( w − w 0 ) j\pi \delta(w+w_{0}) -j\pi \delta(w-w_{0}) δ(w+w0)δ(ww0)
  8. u ( t ) = 1 / 2 + 1 / 2 s g n ( t ) u(t)=1/2+1/2sgn(t) u(t)=1/2+1/2sgn(t)
    • u ( t ) ↔ π δ ( w ) + 1 / j u(t) \leftrightarrow \pi\delta(w) +1/j u(t)πδ(w)+1/j

留数定理

  • 有向围线上的积分等于围线内所有极点留数之和再乘以 2 π 2\pi 2π

理想低通滤波器不可实现的原因

  1. 写出LPF的 H ( j ω ) H(j\omega) H()
  2. 写出LPF的时域上的公式h(t)(门函数与Sa函数相对应)
  3. h(t)与 δ ( t ) \delta(t) δ(t)相比较发生失真(原因是 δ ( t ) \delta(t) δ(t)的频域分量并非所有都被通过)
  4. h(t)为非因果信号,不可实现
  • 佩利-维利准则:
  • ∫ − ∞ + ∞ ∣ l n ∣ H ( j ω ) ∣ ∣ 1 + ω 2 d ω < − ∞ \int_{-\infty}^{+\infty} \frac{|ln|H(j\omega)||}{1+\omega^2}d\omega<-\infty +1+ω2lnH()∣∣dω<
  • H ( j ω ) H(j\omega) H()若有一段为0,则不可实现

随机信号处理

  1. 自相关函数
  2. 已知功率谱密度,求解最小相位表示,并表示自相关函数(正则谱分解 )
  3. 功率谱密度为实函数:(证明共轭相等) R ( j ω ) = R ∗ ( j ω ) R(j\omega)=R^*(j\omega) R()=R()
  • 证明:从自相关函数着手
    • 自相关函数(偶对称的): r x ( m ) = E [ x ( n + m ) x ∗ ( n ) ] ⟹ ( 提出共轭 ) E ∗ [ x ∗ ( n + m ) x ( n ) ] ⟹ ( n = n − m ) ⟹ E ∗ [ x ∗ ( n + m − m ) x ( n − m ) ] = E ∗ [ x ∗ ( n ) x ( n − m ) ] = r ∗ ( − m ) r_{x}(m) = E[x(n+m)x^*(n)]\Longrightarrow (提出共轭)E^*[x^*(n+m)x(n)]\Longrightarrow (n=n-m)\Longrightarrow E^*[x^*(n+m-m)x(n-m)]=E^*[x^*(n)x(n-m)]=r^*(-m) rx(m)=E[x(n+m)x(n)](提出共轭)E[x(n+m)x(n)](n=nm)E[x(n+mm)x(nm)]=E[x(n)x(nm)]=r(m)
      • 偶对偶,奇对奇(Fourier)
      • 实对取负取共轭(Fourier)(自相关函数也是)
      • 实偶对实偶,实奇对虚奇(Fourier)
  • F T ( r ∗ ( − m ) ) = R ∗ ( e j ω ) FT(r^*(-m))=R^*(e^{j\omega}) FT(r(m))=R(e)

截图

Laplace

在这里插入图片描述

z变换
  1. 有限长离散时间信号z变换的收敛域是整个有限z平面。(可能不包括z=0【因果有限长序列】,或者 ∣ z ∣ = − ∞ |z|=-\infty z=【反因果】)因果系统,z平面收敛域应包含无穷
    在这里插入图片描述

在这里插入图片描述

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值