一、构建D和G
D是判别网络,有两个输入:希望判别fake输出为0,real输出为1.
G(x),x表示噪音的数据,噪音的数据先通过G的网络进行生成,然后放入D,让判别网络来判别生成的数据为真还是假。x^表示真实输入为real。
G为生成网络,首先由一个噪音的输入,没有任何规则,希望G网络通过一系列的参数,比如说θ,将x生成为G(x),G(x)能够与real数据越接近越好
二、D_pre
D网络判别的效果的好坏最终能够影响生成网络G,为了能使生成效果更好,需要将D网络做的更好一些。
网络都有权重参数wb,这些权重参数的初始化非常关键,对于D网络,不进行随机的初始化,而是进行预先的训练D_pre,D网络先进行一个判断,知道哪些是0哪些是1数据。
三、先构造一个model,定义一系列网络架构
def main(args):
# 初始化GAN实例
model = GAN(
# 产生真实值
DataDistribution(),
# 产生生成值
GeneratorDistribution(range=8),
args.num_steps, #一共迭代1200次
args.batch_size, #一次迭代12个点的数据
args.log_every, #隔多少次打印一次当前loss
)
model.train()
1、真实数据
class DataDistribution(object):
def __init__(self):
self.mu = 4 #均值
self.sigma = 0.5 #标准差(初始状态蓝色的线)
def sample(self, N):
samples = np.random.normal(self.mu, self.sigma, N)
samples.sort()
return samples
2、生成数据
当我们用G网络的时候,我们需要先造一些噪音点,通过GeneratorDistribution随机的初始化一种分布,
将这种分布当成G网络的输入
class GeneratorDistribution(object):
def __init__(self, range):
self.range = range #随机的初始化分布(G网络的输入)
def sample(self, N):
return np.linspace(-self.range, self.range, N) + \
np.random.random(N) * 0.01
3、定义好参数之后构造GAN模型
class GAN(object):
# 初始化变量
def __init__(self, data, gen, num_steps, batch_size, log_every):
self.data = data
self.gen = gen
self.num_steps = num_steps
self.batch_size = batch_size
self.log_every = log_every
self.mlp_hidden_size = 4 #神经网络非常简易,只有4个神经元
self.learning_rate = 0.03
self._create_model()
4、_create_model
def _create_model(self):
# 建立预判别模型
with tf.variable_scope('D_pre'):#在D_pre域当中构造D_pre网络,为了训练获得D网络初始化参数
self.pre_input = tf.placeholder(tf.float32, shape=(self.batch_size, 1))#pre_input.shape=[12,1]12是batch,1是1维的点
self.pre_labels = tf.placeholder(tf.float32, shape=(self.batch_size, 1))#pre_labels.shape=[12,1]
# 获得预测结果
D_pre = discriminator(self.pre_input, self.mlp_hidden_size)#初始化
# 预测值与真实之间的差异
self.pre_loss = tf.reduce_mean(tf.square(D_pre - self.pre_labels))
# 训练缩小预测值与真实值的差异
self.pre_opt = optimizer(self.pre_loss, None, self.learning_rate)
# This defines the generator network - it takes samples from a noise
# distribution as input, and passes them through an MLP.
# 建立生成模型
with tf.variable_scope('Gen'):
# 伪造数据的生成
self.z = tf.placeholder(tf.float32, shape=(self.batch_size, 1))
self.G = generator(self.z, self.mlp_hidden_size)
# The discriminator tries to tell the difference between samples from the
# true data distribution (self.x) and the generated samples (self.z).
# Here we create two copies of the discriminator network (that share parameters),
# as you cannot use the same network with different inputs in TensorFlow.
# 建立判别模型
with tf.variable_scope('Disc') as scope:
# 对真实值做预测, D1为真实值的概率
self.x = tf.placeholder(tf.float32, shape=(self.batch_size, 1))
self.D1 = discriminator(self.x, self.mlp_hidden_size)
# 变量重用
scope.reuse_variables()
# 对造假值做预测, D2为预测到造假值的概率
self.D2 = discriminator(self.G, self.mlp_hidden_size)
# Define the loss for discriminator and generator networks (see the original
# paper for details), and create optimizers for both
self.loss_d = tf.reduce_mean(-tf.log(self.D1) - tf.log(1 - self.D2))
self.loss_g = tf.reduce_mean(-tf.log(self.D2))
self.d_pre_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='D_pre')
self.d_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Disc')
self.g_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Gen')
# 获得训练以后的参数
self.opt_d = optimizer(self.loss_d, self.d_params, self.learning_rate)
self.opt_g = optimizer(self.loss_g, self.g_params, self.learning_rate)
i、D_pre = discriminator(self.pre_input, self.mlp_hidden_size)进行初始化操作
def discriminator(input, h_dim):#input就是需要判别的数据,真实?生成?h_dim * 2隐藏神经元个数'd0'指定命名域linear控制w参数和b参数初始化
h0 = tf.tanh(linear(input, h_dim * 2, 'd0'))
h1 = tf.tanh(linear(h0, h_dim * 2, 'd1'))
h2 = tf.tanh(linear(h1, h_dim * 2, scope='d2'))
h3 = tf.sigmoid(linear(h2, 1, scope='d3'))
return h3
通过一个linear的函数来控制w参数和b参数的初始化
input大小是等于12x1的,刚刚定义的隐层有8个神经元,所以w是1x8的,b的shape为8
#定义linear, 用于进行卷积
def linear(input, output_dim, scope=None, stddev=1.0):
norm = tf.random_normal_initializer(stddev=stddev) #w参数随机的初始化
const = tf.constant_initializer(0.0) #b参数直接初始化为常量0
with tf.variable_scope(scope or 'linear'):
w = tf.get_variable('w', [input.get_shape()[1], output_dim], initializer=norm)#声明w的shape大小
b = tf.get_variable('b', [output_dim], initializer=const)
return tf.matmul(input, w) + b
ii、完成了D_pre,定义loss
# 获得预测结果
D_pre = discriminator(self.pre_input, self.mlp_hidden_size)#初始化
# 预测值与真实之间的差异
self.pre_loss = tf.reduce_mean(tf.square(D_pre - self.pre_labels))
# 定义优化器进行求解
self.pre_opt = optimizer(self.pre_loss, None, self.learning_rate)
定义optimizer函数,用于优化参数,学习率不断衰减的学习策略
def optimizer(loss, var_list, initial_learning_rate):
# 学习率衰减系数
decay = 0.95 #每次衰减为原来的0.95
num_decay_steps = 150 #每迭代150次进行一次学习率衰减
batch = tf.Variable(0)
#进行学习率的衰减
learning_rate = tf.train.exponential_decay( #tf的学习率衰减的学习方式
initial_learning_rate,
batch,
num_decay_steps,
decay,
staircase=True
)
# 梯度下降求解器
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(
loss,
global_step=batch,
var_list=var_list
)
return optimizer
至此完成了D_pre预先训练的网络模型,目的是想拿出一组差不多的w参数和b参数来初始化真正的判别网络