GNN之GCN基础理论推导

本文介绍了图卷积网络GCN的基础理论,包括卷积的数学定义,如何在图结构上应用Fourier变换解决计算问题,以及Laplacian算子在图信号处理中的作用。通过对卷积定理的证明,阐述了在图数据上进行卷积运算的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图卷积graph convolutional network,简称GCN,最近几年大热,取得不少进展。

清华大学孙茂松教授组发布了Graph Neural Networks: A Review of Methods and Application,对现有的GNN模型做了详尽且全面的综述。

针对GCN中需要的基础理论知识,这里给出数学推导,方便理解。

一、什么是Convolution

Convolution的数学定义是:

(f\ast g)(t)= \int _{R} f(x)g(t-x)dx,一般称g为作用在f上的filter或kernel。

常见的CNN二维卷积示意图如下:

在图像(image)里,卷积的概念很直接,因为像素点的排列顺序有明确的上下左右的位置关系。

但是在抽象的graph里,有的节点会关联上万的节点,这些节点没有空间上的位置关系,也就没办法通过上面的传统卷积公式进行计算。

二、Fourier变换

为了解决graph上卷积计算的问题,需要用到Fourier变换。

根据卷积定理,卷积公式还可以写成:f\ast g = \mathit{F}^{-1}\{F\{f\}}\cdot F\{g\}\} ,这样只需要定义graph上的fourier变换,就可以定义出graph上的convolution变换。

首先,看一下Fourier变换的定义:

F\{f\}(v) = \int _{\mathbb{R}}f(x) e^{-2\pi ix \cdot v} dx

Inverse Fourier变换则是:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值