y
=
x
T
A
x
y=x^TAx
y=xTAx,其中x是n维向量,A是n阶方阵,求
d
y
/
d
x
dy/dx
dy/dx
记
A
=
[
a
i
j
]
A=\left[a_{i j}\right]
A=[aij].
x
∈
R
n
,
x
=
(
x
1
,
…
,
x
n
)
T
x \in \mathbb{R}^{n}, x=\left(x_{1}, \ldots, x_{n}\right)^{T}
x∈Rn,x=(x1,…,xn)T, 则
y
=
∑
i
=
1
n
∑
j
=
1
n
a
i
j
x
i
x
j
y=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}
y=∑i=1n∑j=1naijxixj
故
∂
y
∂
x
k
=
∑
i
≠
k
∂
∂
x
k
(
∑
j
=
1
n
a
i
j
x
i
x
j
)
+
∂
∂
x
k
(
∑
j
=
1
n
a
k
j
x
k
x
j
)
=
∑
i
≠
k
(
∂
∂
x
k
(
∑
j
≠
k
a
i
j
x
i
x
j
)
+
∂
∂
x
k
(
a
i
k
x
i
x
k
)
)
+
∑
j
≠
k
∂
∂
x
k
(
a
k
j
x
k
x
j
)
+
∂
∂
x
k
(
a
k
k
x
k
2
)
=
∑
i
≠
k
(
0
+
a
i
k
x
i
)
+
∑
j
≠
k
a
k
j
x
j
+
2
a
k
k
x
k
=
∑
i
=
1
n
a
i
k
x
i
+
∑
j
=
1
n
a
k
j
x
j
=
(
x
T
A
)
k
+
(
A
x
)
k
\begin{aligned} \frac{\partial y}{\partial x_{k}} &=\sum_{i \neq k} \frac{\partial}{\partial x_{k}}\left(\sum_{j=1}^{n} a_{i j} x_{i} x_{j}\right)+\frac{\partial}{\partial x_{k}}\left(\sum_{j=1}^{n} a_{k j} x_{k} x_{j}\right) \\ &=\sum_{i \neq k}\left(\frac{\partial}{\partial x_{k}}\left(\sum_{j \neq k} a_{i j} x_{i} x_{j}\right)+\frac{\partial}{\partial x_{k}}\left(a_{i k} x_{i} x_{k}\right)\right)+\sum_{j \neq k} \frac{\partial}{\partial x_{k}}\left(a_{k j} x_{k} x_{j}\right)+\frac{\partial}{\partial x_{k}}\left(a_{k k} x_{k}^{2}\right) \\ &=\sum_{i \neq k}( 0+a_{i k} x_{i})+\sum_{j \neq k} a_{k j} x_{j}+2 a_{k k} x_{k} \\ &=\sum_{i=1}^{n} a_{i k} x_{i}+\sum_{j=1}^{n} a_{k j} x_{j} \\ &=\left(x^{T} A\right)_{k}+(A x)_{k} \end{aligned}
∂xk∂y=i=k∑∂xk∂(j=1∑naijxixj)+∂xk∂(j=1∑nakjxkxj)=i=k∑⎝⎛∂xk∂⎝⎛j=k∑aijxixj⎠⎞+∂xk∂(aikxixk)⎠⎞+j=k∑∂xk∂(akjxkxj)+∂xk∂(akkxk2)=i=k∑(0+aikxi)+j=k∑akjxj+2akkxk=i=1∑naikxi+j=1∑nakjxj=(xTA)k+(Ax)k
其中
(
x
T
A
)
k
\left(x^{T} A\right)_{k}
(xTA)k 是行向量
x
T
A
x^{T} A
xTA的第k个分量,
(
A
x
)
k
(A x)_{k}
(Ax)k是列向量
A
x
Ax
Ax的第k个分量。因此
∂
y
∂
x
k
=
(
x
T
A
)
k
+
(
x
T
A
T
)
k
\frac{\partial y}{\partial x_{k}}=\left(x^{T} A\right)_{k}+\left(x^{T} A^{T}\right)_{k}
∂xk∂y=(xTA)k+(xTAT)k.
所以
∇
y
=
x
T
A
+
x
T
A
T
=
x
T
(
A
+
A
T
)
\nabla y=x^{T} A+x^{T} A^{T}=x^{T}\left(A+A^{T}\right)
∇y=xTA+xTAT=xT(A+AT)
特别地,如果A是实对称矩阵,则
∇
y
=
x
T
A
+
x
T
A
T
=
2
x
T
A
\nabla y=x^{T} A+x^{T} A^{T}=2x^{T}A
∇y=xTA+xTAT=2xTA
二次型x^TAx梯度(求导)推导过程
最新推荐文章于 2023-09-01 09:53:21 发布