求解问题
二次型 (Quadratic form)是一个形如 f(x)=12xTAx−bTx+c f ( x ) = 1 2 x T A x − b T x + c 的标量二次方程,如果 A A 是一个
对称正定阵,那么 f(x) f ( x ) 的最小值在 Ax=b A x = b 时取到。计算如下:
f′(x)=Ax−b=0 f ′ ( x ) = A x − b = 0
换一种方式,如果 x=A−1b x = A − 1 b ,对任意 e≠0 e ≠ 0 ,都有 f(x+e)>f(x) f ( x + e ) > f ( x ) ,证明如下:
f(x+e)=12(x+e)TA(x+e)−bT(x+e)+c=12xTAx−bTx+c+eTAx−bTe+12eTAe=f(x)+12eTAe>f(x) f ( x + e ) = 1 2 ( x + e ) T A ( x + e ) − b T ( x + e ) + c = 1 2 x T A x − b T x + c + e T A x − b T e + 1 2 e T A e = f ( x ) + 1 2 e T A e > f ( x )
因此,待求解的问题就是解 Ax=b A x = b ,或者等价的,求解二次型方程 f(x) f ( x ) 的最小值。
误差与残差
最速下降法迭代求解 Ax=b A x = b 。定义第 i i 次迭代得到的解为
,随着迭代次数 i i 的增加,如果算法收敛,则
将趋向于正解 x x 。
定义第