图像隐写术实战:如何用LSB算法隐藏信息及检测方法

图像隐写术实战:如何用LSB算法隐藏信息及检测方法

本文将手把手教你实现LSB图像隐写术,并通过十六进制分析和自动化工具检测隐藏信息。内含完整Python代码、工具推荐和避坑指南!


一、LSB隐写术简介

LSB(Least Significant Bit,最低有效位)隐写术是最常见的图像隐写技术,通过修改像素RGB值的最低位来嵌入信息。人类视觉对最低位的变化不敏感,因此可以实现"隐形"存储。

在这里插入图片描述

为什么选择LSB?

  • 隐蔽性强:修改最低位几乎不影响图像观感
  • 容量可观:每个像素可存储3bit数据(RGB各1bit)
  • 实现简单:通过位运算即可快速编码/解码

二、Python实现LSB隐写

1. 环境准备

pip install pillow

2. 完整代码实现

# -*- coding:utf-8 -*-
from PIL import Image

def makeImageEven(image):
    pixels = list(image.getdata())
    evenPixels = [(r >> 1 << 1, g >> 1 << 1, b >> 1 << 1) for (r, g, b) in pixels]
    evenImage = Image.new(image.mode, image.size)
    evenImage.putdata(evenPixels)
    return evenImage

def constLenBin
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值