完整版看文末名片
2025数维杯 B题保姆级教程思路分析
数维杯挑战赛 B题保姆级教程思路分析
马拉松经济的高质量发展思路探索
下面我将以背景介绍、数据集分析、问题分析的步骤来给大家讲解C题的具体思路。
1 背景介绍
近年来,我国马拉松赛事经历了爆发式增长,成为推动城市经济、文化和社会发展的复合型公共产品。
题目要求通过数据建模解决四类问题,其核心逻辑为:
- 科学规划赛事布局:结合气象、人口等数据筛选窗口期,平衡供需关系。
- 优化路线设计与服务:在西安案例中,融合景点、住宿、交通等多约束条件生成最优路线。
- 提升环境友好性:量化树荫覆盖率,结合气象数据减少高温暴露风险,平衡专业性与舒适度。
- 创新赛事运营模式:设计差异化纪念品与分组规则,增强参与感与赛事粘性。
需要注意以下问题:
1 数据整合与清洗:需跨附件关联数据(如气象数据与赛事时间、西安地形与路线坡度)。2 多目标权衡:例如问题3需平衡树荫覆盖(选手舒适度)与交通影响(城市运行效率),需设计合理的权重或帕累托前沿分析。3 空间建模技术:需利用GIS工具处理西安市坐标数据(如附件13的shp文件),结合路网密度、邻近度等指标划分服务范围。4 动态约束条件:如问题2中“补给站邻近餐饮设施”需动态匹配路径节点,避免静态规划导致局部最优。5 创新性设计:纪念品需结合城市IP(如西安兵马俑元素),年龄分组需基于历史成绩预测竞争激烈程度(如Logistic回归或聚类分析)。
2 数据集分析
数据集字段分析:城市、日期、气温(℃)、气压(hPa)、露点(℃)、风向(角度)、风速(m/s)、云量(%)、降水量(mm)。
预处理步骤:
- 缺失值处理:对连续型变量(如气温、降水量)用线性插值填充,分类变量(如风向)用众数填充。
- 时间格式转换:将日期字段转换为 datetime 类型,便于时间序列分析。
- 城市筛选:提取目标城市(如西安)的数据。
数据有点恼火,后续更新具体的
预处理注意事项
1 空间数据投影统一:确保所有地理数据使用同一坐标系(如WGS84或UTM)。
2 网络图构建:路径规划需将道路数据转换为带权图结构(节点为交叉口,边权重为长度或坡度)。3 动态缓冲区分析:计算补给站与餐饮设施的邻近关系时,需动态生成缓冲区并匹配最近节点。4 多源数据融合:将气象数据与赛事时间关联,分析窗口期的气候适宜性。
3 问题分析
问题一分析与求解:
建模思路:
数据的选择:
指标的定义:
这道题可以使用多目标优化算法求解:
过程如下:
通过上述建模过程,可科学筛选各城市的最佳马拉松举办窗口期,并合理规划赛事规模与频次,实现经济与社会效益的双重提升。
其中更详细的思路、各题目思路、代码、讲解视频、成品论文及其他相关内容,可以点击文末名片哦!