DAY1

Q1

在空间上线性可分的两类点,分别向SVM分类的超平面上做投影,这些点在超平面上的投影仍然是线性可分的吗?

answer

首先明确是题目中的概念,线性可分的两类点,即通过一个超平面可以将两类点完全分开,如下图所示:

在这里插入图片描述
假设超平面(对于二维空间来说,分类超平面退化成一条直线)为svm算法计算得出的分类面,那么两类点就完全被分开。我们想探讨的是:将两类点向绿色平面上做投影,在分类直线上得到黄灰两类投影点是否线性可分?如下图所示:
在这里插入图片描述
显然这些点在分类超平面上相互间隔,但并不是线性可分的,考虑一个更加简单的反例,假设二维空间中只有两个样本点,每个点属于一类分类任务,此时的svm就是两个点的中垂线,两个点都会落在线上的同一个点上,自然是线性不可分的。
实际上对于任意线性可分的两组点,他们在svm分类的超平面上的投影都是线性不可分的。我们先从二维考虑,然后再推导到高维空间。
由于svm分类的超平面仅由支持向量决定,我们可以考虑一个只含有支持向量svm模型的场景。使用反证法来证明。假设存在一个svm分类超平面使所有的支持向量在该平面的投影依然线性可分,如下图所示。根据几何知识不难发现,图中AB两点中垂线组成的超平面(绿色虚线)是相当于绿色实线更优的解,这与之前假设绿色直线超平面为最优的解相矛盾,两组点投影后,并不是线性可分的。
在这里插入图片描述
我们的证明还有不严谨的地方,即我们假设了仅有支持向量的情况,会不会在超平面的变换过程中支持向量发生了改变,原先的支持向量发生了转化呢?下面我们证明svm的分类结果仅依赖于支持向量。考虑svm中的KKT条件要求
▽ ω L ( ω ∗ , β ∗ , α ∗ ) = ω ∗ − ∑ i = 1 N α ∗ y i x i \bigtriangledown _{\omega }L(\omega ^{*},\beta^{*},\alpha ^{*})=\omega^* - \sum_{i=1}^{N}\alpha^*y_ix_i ωL(ω,β,α)=ωi=1Nαyixi ————————————————1
▽ β L ( ω ∗ , β ∗ , α ∗ ) = − ∑ i = 1 N α ∗ y i \bigtriangledown_{\beta}L(\omega^*,\beta^*,\alpha^*)=-\sum_{i=1}^{N}\alpha^*y_i βL(ω,β,α)=i=1Nαyi————————————————————2
α ∗ g i ( ω ∗ ) = 0 , i = 1.... N \alpha^*g_i(\omega^*)=0,i=1....N αgi(ω)=0,i=1....N————————————————————————3
g i ( ω ∗ ) ⩽ 0 , i = 1 , . . . . , N g_i(\omega^*)\leqslant0,i=1,....,N gi(ω)0,i=1,....,N————————————————————————4
α i ∗ ⩾ 0 , i = 1 , . . . . , N \alpha_i^* \geqslant0,i=1,....,N αi0,i=1,....,N——————————————————————————5
结合3和4两个条件不难发现,当 g i ( ω ∗ ) &lt; 0 g_i(\omega^*)&lt;0 gi(ω)<0时必有 α i ∗ = 0 \alpha_i^*=0 αi=0,将这一结果与拉格朗日对偶最优化问题公式相比较
L ( ω ∗ , α ∗ , β ∗ ) = 1 2 ω ∗ 2 + ∑ i = 1 N α i ∗ g i ( ω ∗ ) L(\omega^*,\alpha^*,\beta^*)=\frac{1}{2}\omega^{*2}+\sum_{i=1}^N\alpha^*_ig_i(\omega^*) L(ω,α,β)=21ω2+i=1Nαigi(ω)————————————————6
g i ( ω ∗ ) = − y i ( ω ∗ ⋅ x i + β ∗ ) + 1 g_i(\omega^*)=-y_i(\omega^*\cdot x_i + \beta^*)+1 gi(ω)=yi(ωxi+β)+1
可以看到除了支持向量外,其他系数都是零,因此svm分类的结果与仅使用支持向量的分类一致,说明svm的分类结果只依赖与支持向量,这也是svm拥有高运运行效率的原因之一。于是我们证明了对于任意线性可分的两类点,他们在svm的超平面的投影都是线性不可分的。
实际上,该问题还可以通过凸优化理论(separating hyperplane theorem,sht)中的超平面分离定律更加轻巧的解决。该定理的描述的是,对于不相交的两个凸集,存在一个超平面,将两个凸集分离。对于二维的情况,两个凸集间距离最短两点连线的中垂线就是将他们分离的超平面。
借助这个定理,我们可以先对线性可分的这两组点求各自的凸包。不难发现,svm求得的超平面就是这两个凸包上距离最短的点连线的中垂线,也就是sht定理二维情况中所阐释的分类超平面。根据凸包的性质容易知道,凸包上的点要么是样本点要么处于两个样本的连线上。因此,两个凸包间距离最短的两个点分为三种情况:两边的点均为样本点,如下图a所示;两边的点均在样本点的连线上,如图b所示;一边的为样本点,另一边的点在样本点的连线上,如图c所示。从集合分析可知道,无论哪种情况,两类点的投影都是线性不可分的。

图片a,第一种情况:
图片a第一种情况
图片b 第二种情况
在这里插入图片描述
第三种情况:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值