点云压缩——点云压缩相关知识介绍


接下来的时间主要是想记录一下自己学习点云的知识点,一方面是分享自己所学习到的点云相关知识,一方面是备忘。难免有遗漏以及理解错误的地方,还望大家不吝赐教。

1.什么是点云

点云 是指海量三维点的几何,这些点除了几何坐标还包括了一些附加属性,比如颜色,反射率等等。
根据激光测量原理得到的点云,包括三维坐标(XYZ)和激光反射强度(reflectance)。
根据摄影测量原理得到的点云,包括三维坐标(XYZ)和颜色信息(RGB)。
结合激光测量和摄影测量原理得到点云,包括三维坐标(XYZ)、激光反射强度(reflectance)和颜色信息(RGB)。
在获取物体表面每个采样点的空间坐标后,得到的是一个点的集合,称之为“点云”(Point Cloud)。

2.点云的分类

点云可以按获取的途径进行分类:
1、静态点云:即物体是静止的,获取点云的设备也是静止的。
2、动态点云:物体是运动的,但获取点云的设备是静止的。
3、动态获取点云:获取点云的设备是运动的。

3.点云可以做什么

按点云的用途分为两大类:
类别一:机器感知点云。可以用于自主导航系统、实时巡检系统、地理信息系统、视觉分拣机器人、抢险救灾机器人等场景。
类别二:人眼感知点云。可以用于数字文化遗产、自由视点广播、三维沉浸通信、三维沉浸交互等点云应用场景。

4.为什么要压缩点云

前面说了点云是海量点的集合,存储这些点云数据不仅会消耗大量的内存,而且不利于传输,目前根本没有这么大的带宽可以支持将点云不经过压缩直接在网络层进行传输,因此对点云进行压缩是很有必要的。

目前国际上以及国内正在推进点云标准的制定,主要有国际上MPEG的G-PCC、V-PCC两个平台;以及国内AVS的AVS-PCC平台。后续主要对这两个平台的点云编码框架进行跟进。
点云压缩——G-PCC框架概述

### 基于深度学习的点云压缩算法概述 #### 点云表示学习 为了有效地利用深度学习模型来执行点云压缩,首先需要解决的是如何将原始点云转换成适合神经网络输入的形式。这一过程被称为点云表示学习[^1]。通过这种方法可以提取出点云中的特征向量,从而使得后续的数据压缩更加高效。 #### 数据压缩策略 对于经过预处理后的点云数据,采用特定的技术来进行编码以减少存储空间需求成为可能。当前的研究趋势表明,在该领域内存在两种主流路径——即传统方法与基于深度学习的方法[^2]: - **传统方法**:依赖于诸如PCL这样的专用软件包或是遵循国际标准如GPCC、VPCC等协议; - **深度学习方法**:近年来受到广泛关注并取得显著进展的一种新兴手段,尤其在学术界得到了深入探讨。这类方案通常会设计专门针对三维结构特点定制化的卷积层或其他类型的变换操作,以便更好地捕捉局部和全局的空间关系。 #### 代表性工作 一些重要的研究成果已经发表出来,特别是在有损压缩方面,像PCGCv1、PCGCv2以及pcc_geo_cnn-v1都是值得关注的例子;而在追求完全不失真的场景下,则出现了Voxeldnn这样优秀的解决方案。 ```python import torch from torchvision import models, transforms from PIL import Image # 这里仅提供一个简单的PyTorch框架下的伪代码示例, # 实际应用中还需要考虑更多细节问题。 class PointCloudCompressor(torch.nn.Module): def __init__(self): super(PointCloudCompressor, self).__init__() # 定义用于点云表示学习的部分... def forward(self, x): # 执行前向传播计算... pass def train_model(): model = PointCloudCompressor() optimizer = ... # 初始化优化器 criterion = ... # 设置损失函数 for epoch in range(num_epochs): inputs = ... # 加载训练样本 outputs = model(inputs) loss = criterion(outputs, targets) optimizer.zero_grad() # 清除梯度缓存 loss.backward() # 反向传播求导数 optimizer.step() # 更新参数权重 ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值