轻松玩转LDPC编译码【附代码】

结合实现简单梳理了LDPC,方便学习LDPC码的朋友们轻松上手。如果能实操,那5G的LDPC编译码也就很简单了。

一、LDPC编码原理

1. 基本概念

LDPC(Low-Density Parity-Check)码是一种接近香农限的线性分组码,因其稀疏校验矩阵而得名。码字由信息位和校验位组成,满足线性约束条件。其核心特点是校验矩阵H是稀疏的,即矩阵中“1”的数量远少于“0”。

1.1 校验矩阵H

校验矩阵H是一个m×n的二进制矩阵,其中:

m:校验方程的数量。

n:码字长度。

每一行对应一个校验方程,每一列对应一个码字位。

2. 编码过程

编码过程为发送序列u和生成矩阵G相乘:c=uG。

2.1 生成矩阵G

生成矩阵G是一个k×n的矩阵,满足:

 其中:

 • u:长度为k的信息位向量。

 • c:长度为n的码字向量

(比如5G协议仅规定了校验矩阵H,我们需要根据此公式计算生成矩阵G)

2.2 系统码形式

LDPC码通常采用系统码形式,码字c由信息位u和校验位p组成:c=[u | p]

校验位p通过求解校验方程得到:H=[P | Im]。

(才用系统码的好处是信息位和检验位是分开的,便于打孔处理)

3. 译码过程

LDPC码的译码通常采用置信传播(Belief Propagation, BP)算法,也称为消息传递算法(Message Passing Algorithm, MPA)。

3.1 置信传播算法

变量节点:对应码字位,接收来自校验节点的消息并更新自身信息。

校验节点:对应校验方程,接收来自变量节点的消息并更新校验信息。

迭代过程:变量节点和校验节点交替更新消息,直到满足校验方程或达到最大迭代次数。

3.2 译码步骤

1、初始化:根据接收到的信号初始化变量节点的概率。

2、变量节点更新:向相邻的校验节点发送消息。

3、校验节点更新:向相邻的变量节点发送消息。

4、判决:根据变量节点的最终消息判决码字位。

5、终止条件:若满足校验方程或达到最大迭代次数,则终止译码。

二、LDPC编码设计

1. 校验矩阵设计

校验矩阵H的设计直接影响LDPC码的性能。常用的设计方法包括:

随机构造法:随机生成稀疏矩阵,确保每行和每列的“1”的数量满足要求。

结构化构造法:基于代数或几何方法构造矩阵,如基于有限域或循环移位的方法。

1.1 示例:Gallager构造法

Gallager提出的规则LDPC码构造方法:

将校验矩阵H分为wc个子矩阵,每个子矩阵的每列只有一个“1”。

通过随机排列子矩阵的行,确保每行的“1”数量为wr。

2. 编码设计

LDPC编码的关键是生成矩阵G的构造和校验位的计算。

2.1 生成矩阵构造

1.将校验矩阵H转化为系统形式:

H=[P | Im]

其中P是m×k的矩阵,Im​是m×m的单位矩阵。

生成矩阵G为:

其中Ik是k×k的单位矩阵。

2.2 编码步骤

1.将信息位u与生成矩阵G相乘,得到码字c:c=uG

若采用系统码形式,校验位p通过求解校验方程得到:

3. 译码设计

LDPC译码通常采用置信传播算法,具体实现步骤如下:

3.1 初始化

根据接收到的信号计算变量节点的初始概率(如对数似然比LLR)。

3.2 消息传递

变量节点到校验节点:

校验节点到变量节点:

 3.3 判决

根据变量节点的最终LLR值判决码字位:

 4.4 译码终止条件

若Hc'=0'或达到最大迭代次数,则终止译码。

三、实现

以下是基于上述LDPC编码和译码实例的MATLAB代码实现。代码包括校验矩阵设计、生成矩阵构造、编码过程和译码过程。

% LDPC编码与译码示例

clear;                  

m=128;

n=256;

%产生H矩阵

H=genH(m,n);

H=double(H);

% 2. 生成矩阵构造

[P_h,re_cols]=H2P(H);

% 3. 编码过程

u=round(rand(1, n-m));

u1=[mod((P_h*u')',2) u];

c=reorder(u1,re_cols);

% disp('编码后的码字:');

% disp(c);

% 4. 译码过程

y = [c(1:255) ~c(256)]; %将译码输入的最后一位取反,模拟传输错误

% 初始化变量节点的对数似然比(LLR)

LLR = 2 * y - 1; % 将0/1映射为-1/+1

% 置信传播算法参数

max_iter = 60; % 最大迭代次数

tol = 1e-6; % 容忍误差

% 消息传递

for iter = 1:max_iter

        % 变量节点到校验节点

        m_v2c = repmat(LLR, m, 1) .* H; % 初始化消息

        % 校验节点到变量节点

        m_c2v = zeros(m, n);

        for i = 1:m

            for j = 1:n

                if H(i, j) == 1

                    % 计算校验节点到变量节点的消息

                    prod_tanh = 1;

                    for l = 1:n

                        if H(i, l) == 1 && l ~= j

                            prod_tanh = prod_tanh * tanh(m_v2c(i, l) / 2);

                        end

                    end

                    m_c2v(i, j) = 2 * atanh(prod_tanh);

                end

            end

        end 

        % 更新变量节点的LLR

        LLR_new = LLR;

        for j = 1:n

            sum_mc2v = 0;

            for i = 1:m

                if H(i, j) == 1

                    sum_mc2v = sum_mc2v + m_c2v(i, j);

                end

            end

            LLR_new(j) = LLR(j) + sum_mc2v;

        end

        % 判决

        c_hat = (LLR_new >= 0); % 判决码字位

        % 检查是否满足校验方程

        if mod(c_hat * H', 2) == 0

            disp('译码成功!');

            disp('译码迭代次数:');

            disp(iter);

            break;

        end

        % 更新LLR

        LLR = LLR_new

        % 检查是否达到最大迭代次数

        if iter == max_iter

            disp('达到最大迭代次数,译码失败!');

        end

    end

%%%%%%%%译码后bit%%%%%%%%%%%%

uhat = punc(c_hat,re_cols); 

运行结果:

 以下是基于上述LDPC编码和译码实例的Verilog代码实现。代码包括校验矩阵设计、生成矩阵构造、编码过程和译码过程。

module ldpc_encoder (

    input wire [2:0] u, // 3-bit 信息位

    output wire [5:0] c // 6-bit 码字

);

    // 生成矩阵 G = [I_k | P^T]

    assign c[0] = u[0]; // c[0] = u[0]

    assign c[1] = u[1]; // c[1] = u[1]

    assign c[2] = u[2]; // c[2] = u[2]

    assign c[3] = u[0] ^ u[1]; // c[3] = u[0] + u[1]

    assign c[4] = u[1] ^ u[2]; // c[4] = u[1] + u[2]

    assign c[5] = u[2]; // c[5] = u[2]

endmodule

 

module ldpc_decoder (

    input wire [5:0] y, // 6-bit 接收信号

    output reg [5:0] c_hat, // 6-bit 译码后的码字

    output reg success // 译码成功标志

);

    reg [2:0] LLR [5:0]; // 变量节点的对数似然比(LLR)

    reg [2:0] m_v2c [2:0][5:0]; // 变量节点到校验节点的消息

    reg [2:0] m_c2v [2:0][5:0]; // 校验节点到变量节点的消息

    integer i, j, l;

 

    // 置信传播算法参数

    parameter MAX_ITER = 10; // 最大迭代次数

    integer iter;

 

    // 初始化LLR

    initial begin

        for (i = 0; i < 6; i = i + 1) begin

            LLR[i] = (y[i] == 1) ? 3'b111 : 3'b000; // 简单映射

        end

    end

 

    // 置信传播算法

    always @(*) begin

        for (iter = 0; iter < MAX_ITER; iter = iter + 1) begin

            // 变量节点到校验节点

            for (i = 0; i < 3; i = i + 1) begin

                for (j = 0; j < 6; j = j + 1) begin

                    if (H[i][j] == 1) begin

                        m_v2c[i][j] = LLR[j];

                        for (l = 0; l < 3; l = l + 1) begin

                            if (H[l][j] == 1 && l != i) begin

                                m_v2c[i][j] = m_v2c[i][j] + m_c2v[l][j];

                            end

                        end

                    end

                end

            end

 

            // 校验节点到变量节点

            for (i = 0; i < 3; i = i + 1) begin

                for (j = 0; j < 6; j = j + 1) begin

                    if (H[i][j] == 1) begin

                        m_c2v[i][j] = 0;

                        for (l = 0; l < 6; l = l + 1) begin

                            if (H[i][l] == 1 && l != j) begin

                                m_c2v[i][j] = m_c2v[i][j] + m_v2c[i][l];

                            end

                        end

                    end

                end

            end

 

            // 更新变量节点的LLR

            for (j = 0; j < 6; j = j + 1) begin

                LLR[j] = (y[j] == 1) ? 3'b111 : 3'b000;

                for (i = 0; i < 3; i = i + 1) begin

                    if (H[i][j] == 1) begin

                        LLR[j] = LLR[j] + m_c2v[i][j];

                    end

                end

            end

 

            // 判决

            for (j = 0; j < 6; j = j + 1) begin

                c_hat[j] = (LLR[j] >= 0) ? 1'b1 : 1'b0;

            end

 

            // 检查是否满足校验方程

            success = 1;

            for (i = 0; i < 3; i = i + 1) begin

                if ((c_hat[0] & H[i][0]) ^

                    (c_hat[1] & H[i][1]) ^

                    (c_hat[2] & H[i][2]) ^

                    (c_hat[3] & H[i][3]) ^

                    (c_hat[4] & H[i][4]) ^

                    (c_hat[5] & H[i][5]) != 0) begin

                    success = 0;

                end

            end

 

            if (success) begin

                break; // 译码成功,退出迭代

            end

        end

    end

endmodule

 

// 测试模块

module testbench;

    reg [2:0] u; // 3-bit 信息位

    wire [5:0] c; // 6-bit 码字

    reg [5:0] y; // 6-bit 接收信号

    wire [5:0] c_hat; // 6-bit 译码后的码字

    wire success; // 译码成功标志

 

    // 实例化编码器

    ldpc_encoder encoder (

        .u(u),

        .c(c)

    );

 

    // 实例化译码器

    ldpc_decoder decoder (

        .y(y),

        .c_hat(c_hat),

        .success(success)

    );

 

    initial begin

        // 测试用例

        u = 3'b101; // 信息位

        #10;

        y = c; // 无噪声情况

        #10;

        $display("编码后的码字: %b", c);

        $display("译码后的码字: %b", c_hat);

        $display("译码成功: %b", success);

 

        // 添加噪声

        y = 6'b101101; // 假设接收到的信号有误

        #10;

        $display("编码后的码字: %b", c);

        $display("译码后的码字: %b", c_hat);

        $display("译码成功: %b", success);

    end

endmodule

四、总结

LDPC编码其实很简单的,复杂的是译码迭代过程,译码过程中的检验节点和变量节点的更新需要花时间好好看一下。

关注我,后续写一篇mini-sum算法的译码,可以大大简化译码计算复杂度。

 

### LDPC BP Algorithm Performance and Implementation for Different Code Lengths Low-Density Parity-Check (LDPC) codes are a class of error-correcting codes that have been widely adopted due to their excellent performance close to the Shannon limit. The Belief Propagation (BP) algorithm is one of the most commonly used decoding algorithms for LDPC codes, which operates by iteratively exchanging messages between variable nodes and check nodes within the Tanner graph representation of the code. #### Overview of BP Algorithm in LDPC Decoding The BP algorithm functions based on probabilistic inference over the factor graph associated with an LDPC code. It involves two types of message-passing operations: from variable nodes to check nodes and vice versa. These exchanges continue until either all parity-check equations are satisfied or a maximum number of iterations has been reached[^1]. For varying code lengths \(N\), several factors influence both the computational complexity as well as the bit-error-rate (BER) performance: 1. **Convergence Behavior**: Shorter codes tend to converge faster because they generally possess fewer cycles in their Tanner graphs compared to longer ones. However, this advantage diminishes when considering noise floors since shorter blocklengths may suffer more pronounced error floor effects at high signal-to-noise ratios (SNR)[^2]. 2. **Complexity Considerations**: As expected, increasing the length \(N\) directly impacts computation requirements during each iteration step proportionally; thus requiring greater processing power especially under dense connectivity scenarios where many edges exist connecting variables/checks together[^3]. 3. **Error Correction Capability vs SNR Region**: Longer codewords offer superior distance properties leading them towards better performances across wider ranges including low/moderate/high regions depending upon design criteria such as rate (\(R=k/n\)) selection alongside optimized degree distributions tailored specifically toward target applications like wireless communications systems etc.[^4] Below demonstrates pseudo-code representing generic structure followed while implementing belief propagation technique applicable irrespective specific dimensions chosen initially but adaptable accordingly thereafter through parameter tuning mechanisms provided below : ```python def bp_decoder(received_word, H_matrix, max_iter=50): n = len(received_word) m = len(H_matrix) # Initialize log likelihood ratio values derived via channel observations. llr_values = initialize_llrs(received_word) for _ in range(max_iter): updated_messages_v_to_c = compute_variable_node_updates(llr_values, H_matrix) new_check_node_msgs = update_check_nodes(updated_messages_v_to_c ,H_matrix ) revised_llrs = combine_new_information(new_check_node_msgs,llr_values,H_matrix ) hard_decisions = make_hard_decision(revised_llrs) syndrome_result = calculate_syndrome(hard_decisions,H_matrix ) if np.all(syndrome_result==0): break return hard_decisions ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值