新闻推荐Task01记录

引言

这是对《零基础入门推荐系统【赛题理解+Baseline】Task1》的记录。

赛题理解

此次比赛是新闻推荐场景下的用户行为预测挑战赛, 该赛题是以新闻APP中的新闻推荐为背景, 目的是要求我们根据用户历史浏览点击新闻文章的数据信息预测用户未来的点击行为, 即用户的最后一次点击的新闻文章。将此预测问题转化为监督学习的问题或者软分类的问题是赛题的关键。

评价方式

我们需要提交的结果是针对每个用户user给出5篇文章 a r t i c l e 1 , a r t i c l e 2 , a r t i c l e 3 , a r t i c l e 4 , a r t i c l e 5 article1, article2, article3, article4, article5 article1,article2,article3,article4,article5
题目给出的评价方式如下面公式所示:
s c o r e ( u s e r ) = ∑ k = 1 N s ( u s e r , k ) k score(user) = \sum_{k=1}^N\frac{s(user,k)}{k} score(user)=k=1Nks(user,k)

N即为给出推荐的文章数,因为只预测用户最后点击哪篇文章,所以上式中的5项只有一项不为0.

s ( u s e r , k ) = { 0 a r t i c l e k 没 命 中 1 k a r t i c l e k 命 中 s(user,k)=\left\{ \begin{array}{rcl} 0 & & {articlek没命中}\\ \frac{1}{k} & & {articlek命中} \end{array} \right. s(user,k)={0k1articlekarticlek

Baseline代码

import time, math, os
from tqdm import tqdm
import gc
import pickle
import random
from datetime import datetime
from operator import itemgetter
import numpy as np
import pandas as pd
import warnings
from collections import defaultdict
import collections
warnings.filterwarnings('ignore')

data_path = 'data_raw/'
save_path = 'tmp_results/'

# 节约内存的一个标配函数
def reduce_mem(df):
    starttime = time.time()
    numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
    start_mem = df.memory_usage().sum() / 1024**2
    for col in df.columns:
        col_type = df[col].dtypes
        if col_type in numerics:
            c_min = df[col].min()
            c_max = df[col].max()
            if pd.isnull(c_min) or pd.isnull(c_max):
                continue
            if str(col_type)[:3] == 'int':
                if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
                    df[col] = df[col].astype(np.int8)
                elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
                    df[col] = df[col].astype(np.int16)
                elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
                    df[col] = df[col].astype(np.int32)
                elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
                    df[col] = df[col].astype(np.int64)
            else:
                if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
                    df[col] = df[col].astype(np.float16)
                elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
                    df[col] = df[col].astype(np.float32)
                else:
                    df[col] = df[col].astype(np.float64)
    end_mem = df.memory_usage().sum() / 1024**2
    print('-- Mem. usage decreased to {:5.2f} Mb ({:.1f}% reduction),time spend:{:2.2f} min'.format(end_mem,
                                                                                                           100*(start_mem-end_mem)/start_mem,
                                                                                                           (time.time()-starttime)/60))
    return df

# 读取采样或全量数据
# debug模式:从训练集中划出一部分数据来调试代码
def get_all_click_sample(data_path, sample_nums=10000):
    """
        训练集中采样一部分数据调试
        data_path: 原数据的存储路径
        sample_nums: 采样数目(这里由于机器的内存限制,可以采样用户做)
    """
    all_click = pd.read_csv(data_path + 'train_click_log.csv')
    all_user_ids = all_click.user_id.unique()

    sample_user_ids = np.random.choice(all_user_ids, size=sample_nums, replace=False)
    all_click = all_click[all_click['user_id'].isin(sample_user_ids)]

    all_click = all_click.drop_duplicates((['user_id', 'click_article_id', 'click_timestamp']))
    return all_click


# 读取点击数据,这里分成线上和线下,如果是为了获取线上提交结果应该讲测试集中的点击数据合并到总的数据中
# 如果是为了线下验证模型的有效性或者特征的有效性,可以只使用训练集
def get_all_click_df(data_path='./data_raw/', offline=True):
    if offline:
        all_click = pd.read_csv(data_path + 'train_click_log.csv')
    else:
        trn_click = pd.read_csv(data_path + 'train_click_log.csv')
        tst_click = pd.read_csv(data_path + 'testA_click_log.csv')

        all_click = trn_click.append(tst_click)

    all_click = all_click.drop_duplicates((['user_id', 'click_article_id', 'click_timestamp']))
    return all_click



# 获取用户-文章-点击时间字典
# 根据点击时间获取用户的点击文章序列   {user1: [ (item1, time1) ,  (item2, time2)..]...}
def get_user_item_time(click_df):
    click_df = click_df.sort_values('click_timestamp')

    def make_item_time_pair(df):
        return list(zip(df['click_article_id'], df['click_timestamp']))

    user_item_time_df = click_df.groupby('user_id')['click_article_id', 'click_timestamp'].apply(
        lambda x: make_item_time_pair(x)) \
        .reset_index().rename(columns={0: 'item_time_list'})
    user_item_time_dict = dict(zip(user_item_time_df['user_id'], user_item_time_df['item_time_list']))

    return user_item_time_dict

# 获取近期点击最多的文章  topK
def get_item_topk_click(click_df, k):
    topk_click = click_df['click_article_id'].value_counts().index[:k]
    return topk_click


# itemcf的物品相似度计算
def itemcf_sim(df):
    """
        文章与文章之间的相似性矩阵计算
        :param df: 数据表
        :item_created_time_dict:  文章创建时间的字典
        return : 文章与文章的相似性矩阵
        思路: 基于物品的协同过滤(详细请参考上一期推荐系统基础的组队学习), 在多路召回部分会加上关联规则的召回策略
    """

    user_item_time_dict = get_user_item_time(df)

    # 计算物品相似度
    i2i_sim = {}
    item_cnt = defaultdict(int)
    for user, item_time_list in tqdm(user_item_time_dict.items()):
        # 在基于商品的协同过滤优化的时候可以考虑时间因素
        for i, i_click_time in item_time_list:
            item_cnt[i] += 1
            i2i_sim.setdefault(i, {})
            for j, j_click_time in item_time_list:
                if (i == j):
                    continue
                i2i_sim[i].setdefault(j, 0)

                i2i_sim[i][j] += 1 / math.log(len(item_time_list) + 1)

    i2i_sim_ = i2i_sim.copy()
    for i, related_items in i2i_sim.items():
        for j, wij in related_items.items():
            i2i_sim_[i][j] = wij / math.sqrt(item_cnt[i] * item_cnt[j])

    # 将得到的相似性矩阵保存到本地
    pickle.dump(i2i_sim_, open(save_path + 'itemcf_i2i_sim.pkl', 'wb'))

    return i2i_sim_

# itemcf的文章推荐
# 基于商品的召回i2i
def item_based_recommend(user_id, user_item_time_dict, i2i_sim, sim_item_topk, recall_item_num, item_topk_click):
    """
        基于文章协同过滤的召回
        :param user_id: 用户id
        :param user_item_time_dict: 字典, 根据点击时间获取用户的点击文章序列   {user1: [ (item1, time1) ,  (item2, time2)..]...}
        :param i2i_sim: 字典,文章相似性矩阵
        :param sim_item_topk: 整数, 选择与当前文章最相似的前k篇文章
        :param recall_item_num: 整数, 最后的召回文章数量
        :param item_topk_click: 列表,点击次数最多的文章列表,用户召回补全
        return: 召回的文章列表 {item1:score1, item2: score2...}
        注意: 基于物品的协同过滤(详细请参考上一期推荐系统基础的组队学习), 在多路召回部分会加上关联规则的召回策略
    """

    # 获取用户历史交互的文章
    user_hist_items = user_item_time_dict[user_id]
    user_hist_items_ = {user_id for user_id, _ in user_hist_items}

    item_rank = {}
    for loc, (i, click_time) in enumerate(user_hist_items):
        for j, wij in sorted(i2i_sim[i].items(), key=lambda x: x[1], reverse=True)[:sim_item_topk]:
            if j in user_hist_items_:
                continue

            item_rank.setdefault(j, 0)
            item_rank[j] += wij

    # 不足10个,用热门商品补全
    if len(item_rank) < recall_item_num:
        for i, item in enumerate(item_topk_click):
            if item in item_rank.items():  # 填充的item应该不在原来的列表中
                continue
            item_rank[item] = - i - 100  # 随便给个负数就行
            if len(item_rank) == recall_item_num:
                break

    item_rank = sorted(item_rank.items(), key=lambda x: x[1], reverse=True)[:recall_item_num]

    return item_rank


# 生成提交文件
def submit(recall_df, topk=5, model_name=None):
    recall_df = recall_df.sort_values(by=['user_id', 'pred_score'])
    recall_df['rank'] = recall_df.groupby(['user_id'])['pred_score'].rank(ascending=False, method='first')

    # 判断是不是每个用户都有5篇文章及以上
    tmp = recall_df.groupby('user_id').apply(lambda x: x['rank'].max())
    assert tmp.min() >= topk

    del recall_df['pred_score']
    submit = recall_df[recall_df['rank'] <= topk].set_index(['user_id', 'rank']).unstack(-1).reset_index()

    submit.columns = [int(col) if isinstance(col, int) else col for col in submit.columns.droplevel(0)]
    # 按照提交格式定义列名
    submit = submit.rename(columns={'': 'user_id', 1: 'article_1', 2: 'article_2',
                                    3: 'article_3', 4: 'article_4', 5: 'article_5'})

    save_name = save_path + model_name + '_' + datetime.today().strftime('%m-%d') + '.csv'
    submit.to_csv(save_name, index=False, header=True)


# Press the green button in the gutter to run the script.
if __name__ == '__main__':
    # 全量训练集
    all_click_df = get_all_click_df(offline=False) 
    i2i_sim = itemcf_sim(all_click_df)

    # 给每个用户根据物品的协同过滤推荐文章
    # 定义
    user_recall_items_dict = collections.defaultdict(dict)

    # 获取 用户 - 文章 - 点击时间的字典
    user_item_time_dict = get_user_item_time(all_click_df)

    # 去取文章相似度
    i2i_sim = pickle.load(open(save_path + 'itemcf_i2i_sim.pkl', 'rb'))

    # 相似文章的数量
    sim_item_topk = 10

    # 召回文章数量
    recall_item_num = 10

    # 用户热度补全
    item_topk_click = get_item_topk_click(all_click_df, k=50)

    for user in tqdm(all_click_df['user_id'].unique()):
        user_recall_items_dict[user] = item_based_recommend(user, user_item_time_dict, i2i_sim,sim_item_topk, recall_item_num, item_topk_click)

    # 将召回字典的形式转换成df
    user_item_score_list = []

    for user, items in tqdm(user_recall_items_dict.items()):
        for item, score in items:
            user_item_score_list.append([user, item, score])

    recall_df = pd.DataFrame(user_item_score_list, columns=['user_id', 'click_article_id', 'pred_score'])

    # 获取测试集
    tst_click = pd.read_csv(data_path + 'testA_click_log.csv')
    tst_users = tst_click['user_id'].unique()

    # 从所有的召回数据中将测试集中的用户选出来
    tst_recall = recall_df[recall_df['user_id'].isin(tst_users)]

    # 生成提交文件
    submit(tst_recall, topk=5, model_name='itemcf_baseline')


总结

Baseline总体思路就是根据数据生成不同文章间的相似度,然后保存到相似度矩阵中,再针对不同用户,根据其所读文章的相似度推荐出5篇最后点击可能性最高的文章,具体细节尚未搞懂,若有理解错误的地方,欢迎留言指正。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值