>- **🍨 本文为[🔗365天深度学习训练营]中的学习记录博客**
>- **🍖 原作者:[K同学啊]**
本人往期文章可查阅: 深度学习总结
一、前期工作
🚀我的环境:
- 语言环境:Python3.11.7
- 编译器:jupyter notebook
- 深度学习框架:TensorFlow2.13.0
1. 设置GPU
如果使用的是CPU可以忽略这步
import tensorflow as tf
gpus=tf.config.list_physical_devices("GPU")
if gpus:
gpu0=gpus[0] #如果有多个GPU,仅使用第0个GPU
tf.config.experimental.set_memory_growth(gpu0,True) #设置GPU显存用量按需使用
tf.config.set_visible_devices([gpu0],"GPU")
gpus
运行结果:
[]
因我的机器一直无法安装上GPU版本,故显示上述结果,如能正常安装GPU版本的话应显示为:[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
2. 导入数据
import pathlib
data_dir="D:\THE MNIST DATABASE\P5-data"
data_dir=pathlib.Path(data_dir)
3. 查看数据
image_count=len(list(data_dir.glob('**/*.jpg')))
print("图片总数为:",image_count)
运行结果:
图片总数为: 578
查看其中某张图片:
import PIL
roses=list(data_dir.glob('train/nike/*.jpg'))
PIL.Image.open(str(roses[0]))
运行结果:
二、数据预处理
1. 加载数据
使用image_dataset_from_directory
方法将磁盘中的数据加载到tf.data.Dataset
中
- tf.keras.preprocessing.image_dataset_from_directory():是 TensorFlow 的 Keras 模块中的一个函数,用于从目录中创建一个图像数据集(dataset)。这个函数可以以更方便的方式加载图像数据,用于训练和评估神经网络模型。
测试集与验证集的关系:
- 验证集并没有参与训练过程梯度下降过程的,狭义上来讲是没有参与模型的参数训练更新的。
- 但是广义上来讲,验证集存在的意义确实参与了一个“人工调参”的过程,我们根据每一个epoch训练之后模型在valid data上的表现来决定是否需要训练进行early stop,或者根据这个过程模型的性能变化来调整模型的超参数,如学习率,batch_size等等。
- 因此,我们也可以认为,验证集也参与了训练,但是并没有使得模型去overfit验证集
batch_size=32
img_height=224
img_width=224
加载测试集:
train_ds=tf.keras.preprocessing.image_dataset_from_directory(
r"D:\THE MNIST DATABASE\P5-data\train",
seed=123,
image_size=(img_height,img_width),
batch_size=batch_size
)
运行结果:
Found 502 files belonging to 2 classes.
加载验证集:
val_ds=tf.keras.preprocessing.image_dataset_from_directory(
r"D:\THE MNIST DATABASE\P5-data\test",
seed=123,
image_size=(img_height,img_width),
batch_size=batch_size
)
运行结果:
Found 76 files belonging to 2 classes.
通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。
class_names=train_ds.class_names
print(class_names)
运行结果:
['adidas', 'nike']
2. 可视化数据
import matplotlib.pyplot as plt
plt.figure(figsize=(20,10))
for images,labels in train_ds.take(1):
for i in range(20):
ax=plt.subplot(5,10,i+1)
plt.imshow(images[i].numpy().astype("uint8"))
plt.title(class_names[labels[i]])
plt.axis("off")
运行结果:
3. 再次检查数据
for image_batch,labels_batch in train_ds:
print(image_batch.shape)
print(labels_batch.shape)
break
运行结果:
(32, 224, 224, 3)
(32,)
Image_batch
是形状的张量(32,224,224,3)。这是一批形状224x224x3的32张图片(最后一维指的是彩色通道RGB)。
Label_batch
是形状(32,)的张量,这些标签对应32张图片
4. 配置数据集
- shuffle() :打乱数据,关于此函数的详细介绍可以参考:https://zhuanlan.zhihu.com/p/42417456
- prefetch() :预取数据,加速运行
prefetch()
功能详细介绍:CPU 正在准备数据时,加速器处于空闲状态。相反,当加速器正在训练模型时,CPU 处于空闲状态。因此,训练所用的时间是 CPU 预处理时间和加速器训练时间的总和。prefetch()
将训练步骤的预处理和模型执行过程重叠到一起。当加速器正在执行第 N 个训练步时,CPU 正在准备第 N+1 步的数据。这样做不仅可以最大限度地缩短训练的单步用时(而不是总用时),而且可以缩短提取和转换数据所需的时间。如果不使用prefetch()
,CPU 和 GPU/TPU 在大部分时间都处于空闲状态:
使用prefetch()
可显著减少空闲时间:
- cache() :将数据集缓存到内存当中,加速运行
AUTOTUNE=tf.data.AUTOTUNE
train_ds=train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds=val_ds.cache().prefetch(buffer_size=AUTOTUNE)
三、构建CNN网络
卷积神经网络(CNN)的输入是张量 (Tensor) 形式的 (image_height, image_width, color_channels)
,包含了图像高度、宽度及颜色信息。不需要输入batch size
。color_channels 为 (R,G,B) 分别对应 RGB 的三个颜色通道(color channel)。在此示例中,我们的 CNN 输入的形状是 (224, 224, 3)
即彩色图像。我们需要在声明第一层时将形状赋值给参数input_shape
。
网络结构图(可单击放大查看):
from tensorflow.keras import models,layers
model=models.Sequential([
layers.experimental.preprocessing.Rescaling(1./255,input_shape=(img_height,img_width,3)),
layers.Conv2D(16,(3,3),activation='relu',input_shape=(img_height,img_width,3)),#卷积层1,卷积核3*3
layers.AveragePooling2D((2,2)), #池化层1,2*2采样
layers.Conv2D(32,(3,3),activation='relu'), #卷积层2,卷积核3*3
layers.AveragePooling2D((2,2)), #池化层2,2*2采样
layers.Dropout(0.3), #防止过拟合,提高模型的泛化能力
layers.Conv2D(64,(3,3),activation='relu'), #卷积层3,卷积核3*3
layers.Dropout(0.3), #防止过拟合,提高模型的泛化能力
layers.Flatten(), #Flatten层,连接卷积层与全连接层
layers.Dense(128,activation='relu'), #全连接层,特征进一步提取
layers.Dense(len(class_names)) #输出层,输出预测结果
])
model.summary()
运行结果:
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
rescaling_2 (Rescaling) (None, 224, 224, 3) 0
conv2d_6 (Conv2D) (None, 222, 222, 16) 448
average_pooling2d_4 (Avera (None, 111, 111, 16) 0
gePooling2D)
conv2d_7 (Conv2D) (None, 109, 109, 32) 4640
average_pooling2d_5 (Avera (None, 54, 54, 32) 0
gePooling2D)
dropout_4 (Dropout) (None, 54, 54, 32) 0
conv2d_8 (Conv2D) (None, 52, 52, 64) 18496
dropout_5 (Dropout) (None, 52, 52, 64) 0
flatten_2 (Flatten) (None, 173056) 0
dense_4 (Dense) (None, 128) 22151296
dense_5 (Dense) (None, 2) 258
=================================================================
Total params: 22175138 (84.59 MB)
Trainable params: 22175138 (84.59 MB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________
四、训练模型
在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:
- 损失函数(loss):用于衡量模型在训练期间的准确率。
- 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
- 指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
1.设置动态学习率
📮 ExponentialDecay函数:
tf.keras.optimizers.schedules.ExponentialDecay
是 TensorFlow 中的一个学习率衰减策略,用于在训练神经网络时动态地降低学习率。学习率衰减是一种常用的技巧,可以帮助优化算法更有效地收敛到全局最小值,从而提高模型的性能。
🔎 主要参数:
- initial_learning_rate(初始学习率):初始学习率大小。
- decay_steps(衰减步数):学习率衰减的步数。在经过 decay_steps 步后,学习率将按照指数函数衰减。例如,如果 decay_steps 设置为 10,则每10步衰减一次。
- decay_rate(衰减率):学习率的衰减率。它决定了学习率如何衰减。通常,取值在 0 到 1 之间。
- staircase(阶梯式衰减):一个布尔值,控制学习率的衰减方式。如果设置为 True,则学习率在每个 decay_steps 步之后直接减小,形成阶梯状下降。如果设置为 False,则学习率将连续衰减。
#设置初始学习率
initial_learning_rate=0.0001
lr_schedule=tf.keras.optimizers.schedules.ExponentialDecay(
initial_learning_rate,
decay_steps=10, #注意,这里是指steps,不是指epochs
decay_rate=0.92, #lr经过一次衰减就会变成decay_rate*lr
staircase=True
)
#将指数衰减学习率送入优化器
optimizer=tf.keras.optimizers.Adam(learning_rate=lr_schedule)
model.compile(optimizer=optimizer,
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
注:这里设置的动态学习率为:指数衰减型(ExponentialDecay)。在每一个epoch开始前,学习率(learning_rate)都将会重置为初始学习率(initial_learning_rate),然后再重新开始衰减。计算公式如下:
learning_rate = initial_learning_rate * decay_rate ^ (step / decay_steps)
学习率大与学习率小的优缺点分析:
学习率大
- 优点:
-
- 1、加快学习速率。
-
- 2、有助于跳出局部最优值。
- 缺点:
-
- 1、导致模型训练不收敛。
-
- 2、单单使用大学习率容易导致模型不精确。
学习率小
- 优点:
-
- 1、有助于模型收敛、模型细化。
-
- 2、提高模型精度。
- 缺点:
-
- 1、很难跳出局部最优值。
-
- 2、收敛缓慢。
2.早停与保存最佳模型参数
EarlyStopping()参数说明:
monitor
: 被监测的数据。
min_delta
: 在被监测的数据中被认为是提升的最小变化, 例如,小于 min_delta 的绝对变化会被认为没有提升。
patience
: 没有进步的训练轮数,在这之后训练就会被停止。
verbose
: 详细信息模式。
mode
: {auto, min, max} 其中之一。 在 min 模式中, 当被监测的数据停止下降,训练就会停止;在 max 模式中,当被监测的数据停止上升,训练就会停止;在 auto 模式中,方向会自动从被监测的数据的名字中判断出来。
baseline
: 要监控的数量的基准值。 如果模型没有显示基准的改善,训练将停止。
estore_best_weights
: 是否从具有监测数量的最佳值的时期恢复模型权重。 如果为 False,则使用在训练的最后一步获得的模型权重。
from tensorflow.keras.callbacks import ModelCheckpoint,EarlyStopping
epochs=50
#保存最佳模型参数
checkpointer=ModelCheckpoint('T5_model.h5',
monitor='val_accuracy',
verbose=1,
save_best_only=True,
save_weights_only=True)
#设置早停
earlystopper=EarlyStopping(monitor='val_accuracy',
min_delta=0.001,
patience=20,
verbose=1)
3. 模型训练
history=model.fit(train_ds,
validation_data=val_ds,
epochs=epochs,
callbacks=[checkpointer,earlystopper])
运行结果:
Epoch 1/50
16/16 [==============================] - ETA: 0s - loss: 1.0860 - accuracy: 0.5299
Epoch 1: val_accuracy improved from -inf to 0.51316, saving model to T5_model.h5
16/16 [==============================] - 14s 790ms/step - loss: 1.0860 - accuracy: 0.5299 - val_loss: 0.6981 - val_accuracy: 0.5132
Epoch 2/50
16/16 [==============================] - ETA: 0s - loss: 0.6969 - accuracy: 0.5578
Epoch 2: val_accuracy improved from 0.51316 to 0.55263, saving model to T5_model.h5
16/16 [==============================] - 15s 922ms/step - loss: 0.6969 - accuracy: 0.5578 - val_loss: 0.6785 - val_accuracy: 0.5526
Epoch 3/50
16/16 [==============================] - ETA: 0s - loss: 0.6815 - accuracy: 0.5757
Epoch 3: val_accuracy improved from 0.55263 to 0.73684, saving model to T5_model.h5
16/16 [==============================] - 12s 765ms/step - loss: 0.6815 - accuracy: 0.5757 - val_loss: 0.6613 - val_accuracy: 0.7368
Epoch 4/50
16/16 [==============================] - ETA: 0s - loss: 0.6677 - accuracy: 0.5936
Epoch 4: val_accuracy did not improve from 0.73684
16/16 [==============================] - 12s 773ms/step - loss: 0.6677 - accuracy: 0.5936 - val_loss: 0.6584 - val_accuracy: 0.6184
Epoch 5/50
16/16 [==============================] - ETA: 0s - loss: 0.6649 - accuracy: 0.5837
Epoch 5: val_accuracy did not improve from 0.73684
16/16 [==============================] - 12s 719ms/step - loss: 0.6649 - accuracy: 0.5837 - val_loss: 0.6577 - val_accuracy: 0.5921
Epoch 6/50
16/16 [==============================] - ETA: 0s - loss: 0.6540 - accuracy: 0.6076
Epoch 6: val_accuracy did not improve from 0.73684
16/16 [==============================] - 12s 758ms/step - loss: 0.6540 - accuracy: 0.6076 - val_loss: 0.6577 - val_accuracy: 0.5921
Epoch 7/50
16/16 [==============================] - ETA: 0s - loss: 0.6496 - accuracy: 0.6295
Epoch 7: val_accuracy did not improve from 0.73684
16/16 [==============================] - 12s 745ms/step - loss: 0.6496 - accuracy: 0.6295 - val_loss: 0.6386 - val_accuracy: 0.6447
Epoch 8/50
16/16 [==============================] - ETA: 0s - loss: 0.6552 - accuracy: 0.5857
Epoch 8: val_accuracy did not improve from 0.73684
16/16 [==============================] - 12s 733ms/step - loss: 0.6552 - accuracy: 0.5857 - val_loss: 0.6507 - val_accuracy: 0.5921
Epoch 9/50
16/16 [==============================] - ETA: 0s - loss: 0.6452 - accuracy: 0.6036
Epoch 9: val_accuracy did not improve from 0.73684
16/16 [==============================] - 12s 744ms/step - loss: 0.6452 - accuracy: 0.6036 - val_loss: 0.6769 - val_accuracy: 0.6053
Epoch 10/50
16/16 [==============================] - ETA: 0s - loss: 0.6362 - accuracy: 0.6275
Epoch 10: val_accuracy did not improve from 0.73684
16/16 [==============================] - 12s 728ms/step - loss: 0.6362 - accuracy: 0.6275 - val_loss: 0.6735 - val_accuracy: 0.6053
Epoch 11/50
16/16 [==============================] - ETA: 0s - loss: 0.6243 - accuracy: 0.6633
Epoch 11: val_accuracy did not improve from 0.73684
16/16 [==============================] - 12s 738ms/step - loss: 0.6243 - accuracy: 0.6633 - val_loss: 0.6658 - val_accuracy: 0.6184
Epoch 12/50
16/16 [==============================] - ETA: 0s - loss: 0.6127 - accuracy: 0.6952
Epoch 12: val_accuracy did not improve from 0.73684
16/16 [==============================] - 12s 773ms/step - loss: 0.6127 - accuracy: 0.6952 - val_loss: 0.6584 - val_accuracy: 0.6316
Epoch 13/50
16/16 [==============================] - ETA: 0s - loss: 0.6077 - accuracy: 0.7052
Epoch 13: val_accuracy did not improve from 0.73684
16/16 [==============================] - 12s 738ms/step - loss: 0.6077 - accuracy: 0.7052 - val_loss: 0.6555 - val_accuracy: 0.6316
Epoch 14/50
16/16 [==============================] - ETA: 0s - loss: 0.6053 - accuracy: 0.7112
Epoch 14: val_accuracy did not improve from 0.73684
16/16 [==============================] - 12s 734ms/step - loss: 0.6053 - accuracy: 0.7112 - val_loss: 0.7090 - val_accuracy: 0.6184
Epoch 15/50
16/16 [==============================] - ETA: 0s - loss: 0.6050 - accuracy: 0.6952
Epoch 15: val_accuracy did not improve from 0.73684
16/16 [==============================] - 12s 738ms/step - loss: 0.6050 - accuracy: 0.6952 - val_loss: 0.6625 - val_accuracy: 0.6316
Epoch 16/50
16/16 [==============================] - ETA: 0s - loss: 0.6012 - accuracy: 0.7072
Epoch 16: val_accuracy did not improve from 0.73684
16/16 [==============================] - 12s 750ms/step - loss: 0.6012 - accuracy: 0.7072 - val_loss: 0.6720 - val_accuracy: 0.6316
Epoch 17/50
16/16 [==============================] - ETA: 0s - loss: 0.6007 - accuracy: 0.7112
Epoch 17: val_accuracy did not improve from 0.73684
16/16 [==============================] - 12s 726ms/step - loss: 0.6007 - accuracy: 0.7112 - val_loss: 0.6693 - val_accuracy: 0.6316
Epoch 18/50
16/16 [==============================] - ETA: 0s - loss: 0.5900 - accuracy: 0.7012
Epoch 18: val_accuracy did not improve from 0.73684
16/16 [==============================] - 12s 733ms/step - loss: 0.5900 - accuracy: 0.7012 - val_loss: 0.6641 - val_accuracy: 0.6447
Epoch 19/50
16/16 [==============================] - ETA: 0s - loss: 0.5905 - accuracy: 0.7092
Epoch 19: val_accuracy did not improve from 0.73684
16/16 [==============================] - 12s 730ms/step - loss: 0.5905 - accuracy: 0.7092 - val_loss: 0.6475 - val_accuracy: 0.6711
Epoch 20/50
16/16 [==============================] - ETA: 0s - loss: 0.5902 - accuracy: 0.6992
Epoch 20: val_accuracy did not improve from 0.73684
16/16 [==============================] - 12s 724ms/step - loss: 0.5902 - accuracy: 0.6992 - val_loss: 0.6631 - val_accuracy: 0.6711
Epoch 21/50
16/16 [==============================] - ETA: 0s - loss: 0.5828 - accuracy: 0.7151
Epoch 21: val_accuracy did not improve from 0.73684
16/16 [==============================] - 11s 711ms/step - loss: 0.5828 - accuracy: 0.7151 - val_loss: 0.6623 - val_accuracy: 0.6711
Epoch 22/50
16/16 [==============================] - ETA: 0s - loss: 0.5875 - accuracy: 0.7072
Epoch 22: val_accuracy did not improve from 0.73684
16/16 [==============================] - 11s 713ms/step - loss: 0.5875 - accuracy: 0.7072 - val_loss: 0.6572 - val_accuracy: 0.6579
Epoch 23/50
16/16 [==============================] - ETA: 0s - loss: 0.5823 - accuracy: 0.7171
Epoch 23: val_accuracy did not improve from 0.73684
16/16 [==============================] - 12s 736ms/step - loss: 0.5823 - accuracy: 0.7171 - val_loss: 0.6510 - val_accuracy: 0.6711
Epoch 23: early stopping
五、模型评估
1. Loss与Accuracy图
acc=history.history['accuracy']
val_acc=history.history['val_accuracy']
loss=history.history['loss']
val_loss=history.history['val_loss']
epochs_range=range(len(loss))
plt.figure(figsize=(12,4))
plt.subplot(1,2,1)
plt.plot(epochs_range,acc,label='Training Accuracy')
plt.plot(epochs_range,val_acc,label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1,2,2)
plt.plot(epochs_range,loss,label='Training Loss')
plt.plot(epochs_range,val_loss,label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
运行结果:
2. 指定图片进行预测
#加载效果最好的模型权重
model.load_weights('T5_model.h5')
from PIL import Image
import numpy as np
img=Image.open(r"D:\THE MNIST DATABASE\P5-data\test\nike\1.jpg")
image=tf.image.resize(img,[img_height,img_width])
img_array=tf.expand_dims(image,0)#/255.0
predictions=model.predict(img_array) #选用已经训练好的模型
print("预测结果为:",class_names[np.argmax(predictions)])
运行结果:
1/1 [==============================] - 0s 109ms/step
预测结果为: adidas
六、心得体会
在本次搭建的模型中添加了 EarlyStopping()方法,该方法有效的抑制了过拟合现象的出现,减少无用的训练轮次。