第T5周:运动鞋品牌识别

>- **🍨 本文为[🔗365天深度学习训练营]中的学习记录博客**
>- **🍖 原作者:[K同学啊]**

一、前期工作

🚀我的环境:

  • 语言环境:Python3.11.7
  • 编译器:jupyter notebook
  • 深度学习框架:TensorFlow2.13.0

1. 设置GPU

如果使用的是CPU可以忽略这步

import tensorflow as tf

gpus=tf.config.list_physical_devices("GPU")

if gpus:
    gpu0=gpus[0]  #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0,True) #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")
    
gpus

运行结果:

[]

 因我的机器一直无法安装上GPU版本,故显示上述结果,如能正常安装GPU版本的话应显示为:[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]

2. 导入数据

import pathlib

data_dir="D:\THE MNIST DATABASE\P5-data"
data_dir=pathlib.Path(data_dir)

3. 查看数据

image_count=len(list(data_dir.glob('**/*.jpg')))

print("图片总数为:",image_count)

运行结果:

图片总数为: 578

查看其中某张图片:

import PIL

roses=list(data_dir.glob('train/nike/*.jpg'))
PIL.Image.open(str(roses[0]))

运行结果:

二、数据预处理

1. 加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset

  • tf.keras.preprocessing.image_dataset_from_directory():是 TensorFlow 的 Keras 模块中的一个函数,用于从目录中创建一个图像数据集(dataset)。这个函数可以以更方便的方式加载图像数据,用于训练和评估神经网络模型。

测试集与验证集的关系:

  1. 验证集并没有参与训练过程梯度下降过程的,狭义上来讲是没有参与模型的参数训练更新的。
  2. 但是广义上来讲,验证集存在的意义确实参与了一个“人工调参”的过程,我们根据每一个epoch训练之后模型在valid data上的表现来决定是否需要训练进行early stop,或者根据这个过程模型的性能变化来调整模型的超参数,如学习率,batch_size等等。
  3. 因此,我们也可以认为,验证集也参与了训练,但是并没有使得模型去overfit验证集
batch_size=32
img_height=224
img_width=224

 加载测试集:

train_ds=tf.keras.preprocessing.image_dataset_from_directory(
    r"D:\THE MNIST DATABASE\P5-data\train",
    seed=123,
    image_size=(img_height,img_width),
    batch_size=batch_size
)

运行结果:

Found 502 files belonging to 2 classes.

加载验证集:

val_ds=tf.keras.preprocessing.image_dataset_from_directory(
    r"D:\THE MNIST DATABASE\P5-data\test",
    seed=123,
    image_size=(img_height,img_width),
    batch_size=batch_size
)

运行结果:

Found 76 files belonging to 2 classes.

通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。

class_names=train_ds.class_names
print(class_names)

运行结果:

['adidas', 'nike']

2. 可视化数据

import matplotlib.pyplot as plt

plt.figure(figsize=(20,10))

for images,labels in train_ds.take(1):
    for i in range(20):
        ax=plt.subplot(5,10,i+1)
        
        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        
        plt.axis("off")

运行结果:

3. 再次检查数据 

for image_batch,labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break

运行结果:

(32, 224, 224, 3)
(32,)
  • Image_batch是形状的张量(32,224,224,3)。这是一批形状224x224x3的32张图片(最后一维指的是彩色通道RGB)。
  • Label_batch是形状(32,)的张量,这些标签对应32张图片

4. 配置数据集

  • prefetch() :预取数据,加速运行

prefetch()功能详细介绍:CPU 正在准备数据时,加速器处于空闲状态。相反,当加速器正在训练模型时,CPU 处于空闲状态。因此,训练所用的时间是 CPU 预处理时间和加速器训练时间的总和。prefetch()将训练步骤的预处理和模型执行过程重叠到一起。当加速器正在执行第 N 个训练步时,CPU 正在准备第 N+1 步的数据。这样做不仅可以最大限度地缩短训练的单步用时(而不是总用时),而且可以缩短提取和转换数据所需的时间。如果不使用prefetch(),CPU 和 GPU/TPU 在大部分时间都处于空闲状态:

 使用prefetch()可显著减少空闲时间:

  • cache() :将数据集缓存到内存当中,加速运行
AUTOTUNE=tf.data.AUTOTUNE

train_ds=train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds=val_ds.cache().prefetch(buffer_size=AUTOTUNE)

三、构建CNN网络

卷积神经网络(CNN)的输入是张量 (Tensor) 形式的 (image_height, image_width, color_channels),包含了图像高度、宽度及颜色信息。不需要输入batch size。color_channels 为 (R,G,B) 分别对应 RGB 的三个颜色通道(color channel)。在此示例中,我们的 CNN 输入的形状是 (224, 224, 3)即彩色图像。我们需要在声明第一层时将形状赋值给参数input_shape

网络结构图(可单击放大查看)

from tensorflow.keras import models,layers

model=models.Sequential([
    layers.experimental.preprocessing.Rescaling(1./255,input_shape=(img_height,img_width,3)),
    
    layers.Conv2D(16,(3,3),activation='relu',input_shape=(img_height,img_width,3)),#卷积层1,卷积核3*3
    layers.AveragePooling2D((2,2)), #池化层1,2*2采样
    layers.Conv2D(32,(3,3),activation='relu'), #卷积层2,卷积核3*3
    layers.AveragePooling2D((2,2)), #池化层2,2*2采样
    layers.Dropout(0.3), #防止过拟合,提高模型的泛化能力
    layers.Conv2D(64,(3,3),activation='relu'), #卷积层3,卷积核3*3
    layers.Dropout(0.3), #防止过拟合,提高模型的泛化能力
    
    layers.Flatten(),  #Flatten层,连接卷积层与全连接层
    layers.Dense(128,activation='relu'), #全连接层,特征进一步提取
    layers.Dense(len(class_names))  #输出层,输出预测结果
])

model.summary()

 运行结果:

Model: "sequential"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 rescaling_2 (Rescaling)     (None, 224, 224, 3)       0         
                                                                 
 conv2d_6 (Conv2D)           (None, 222, 222, 16)      448       
                                                                 
 average_pooling2d_4 (Avera  (None, 111, 111, 16)      0         
 gePooling2D)                                                    
                                                                 
 conv2d_7 (Conv2D)           (None, 109, 109, 32)      4640      
                                                                 
 average_pooling2d_5 (Avera  (None, 54, 54, 32)        0         
 gePooling2D)                                                    
                                                                 
 dropout_4 (Dropout)         (None, 54, 54, 32)        0         
                                                                 
 conv2d_8 (Conv2D)           (None, 52, 52, 64)        18496     
                                                                 
 dropout_5 (Dropout)         (None, 52, 52, 64)        0         
                                                                 
 flatten_2 (Flatten)         (None, 173056)            0         
                                                                 
 dense_4 (Dense)             (None, 128)               22151296  
                                                                 
 dense_5 (Dense)             (None, 2)                 258       
                                                                 
=================================================================
Total params: 22175138 (84.59 MB)
Trainable params: 22175138 (84.59 MB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________

四、训练模型

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

  • 损失函数(loss):用于衡量模型在训练期间的准确率。
  • 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
  • 指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。

1.设置动态学习率

📮 ExponentialDecay函数:

tf.keras.optimizers.schedules.ExponentialDecay是 TensorFlow 中的一个学习率衰减策略,用于在训练神经网络时动态地降低学习率。学习率衰减是一种常用的技巧,可以帮助优化算法更有效地收敛到全局最小值,从而提高模型的性能。

🔎 主要参数:

  • initial_learning_rate(初始学习率):初始学习率大小。
  • decay_steps(衰减步数):学习率衰减的步数。在经过 decay_steps 步后,学习率将按照指数函数衰减。例如,如果 decay_steps 设置为 10,则每10步衰减一次。
  • decay_rate(衰减率):学习率的衰减率。它决定了学习率如何衰减。通常,取值在 0 到 1 之间。
  • staircase(阶梯式衰减):一个布尔值,控制学习率的衰减方式。如果设置为 True,则学习率在每个 decay_steps 步之后直接减小,形成阶梯状下降。如果设置为 False,则学习率将连续衰减。
#设置初始学习率
initial_learning_rate=0.0001

lr_schedule=tf.keras.optimizers.schedules.ExponentialDecay(
    initial_learning_rate,
    decay_steps=10,  #注意,这里是指steps,不是指epochs
    decay_rate=0.92,  #lr经过一次衰减就会变成decay_rate*lr
    staircase=True
)
#将指数衰减学习率送入优化器
optimizer=tf.keras.optimizers.Adam(learning_rate=lr_schedule)

model.compile(optimizer=optimizer,
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

注:这里设置的动态学习率为:指数衰减型(ExponentialDecay)。在每一个epoch开始前,学习率(learning_rate)都将会重置为初始学习率(initial_learning_rate),然后再重新开始衰减。计算公式如下:

learning_rate = initial_learning_rate * decay_rate ^ (step / decay_steps)

学习率大与学习率小的优缺点分析:

学习率大

  • 优点:
    • 1、加快学习速率。
    • 2、有助于跳出局部最优值。
  • 缺点:
    • 1、导致模型训练不收敛。
    • 2、单单使用大学习率容易导致模型不精确。

学习率小

  • 优点:
    • 1、有助于模型收敛、模型细化。
    • 2、提高模型精度。
  • 缺点:
    • 1、很难跳出局部最优值。
    • 2、收敛缓慢。

2.早停与保存最佳模型参数

EarlyStopping()参数说明

  • monitor: 被监测的数据。
  • min_delta: 在被监测的数据中被认为是提升的最小变化, 例如,小于 min_delta 的绝对变化会被认为没有提升。
  • patience: 没有进步的训练轮数,在这之后训练就会被停止。
  • verbose: 详细信息模式。
  • mode: {auto, min, max} 其中之一。 在 min 模式中, 当被监测的数据停止下降,训练就会停止;在 max 模式中,当被监测的数据停止上升,训练就会停止;在 auto 模式中,方向会自动从被监测的数据的名字中判断出来。
  • baseline: 要监控的数量的基准值。 如果模型没有显示基准的改善,训练将停止。
  • estore_best_weights: 是否从具有监测数量的最佳值的时期恢复模型权重。 如果为 False,则使用在训练的最后一步获得的模型权重。

from tensorflow.keras.callbacks import ModelCheckpoint,EarlyStopping

epochs=50

#保存最佳模型参数
checkpointer=ModelCheckpoint('T5_model.h5',
                             monitor='val_accuracy',
                             verbose=1,
                             save_best_only=True,
                             save_weights_only=True)

#设置早停
earlystopper=EarlyStopping(monitor='val_accuracy',
                           min_delta=0.001,
                           patience=20,
                           verbose=1)

3. 模型训练

history=model.fit(train_ds,
                  validation_data=val_ds,
                  epochs=epochs,
                  callbacks=[checkpointer,earlystopper])

 运行结果:

Epoch 1/50
16/16 [==============================] - ETA: 0s - loss: 1.0860 - accuracy: 0.5299
Epoch 1: val_accuracy improved from -inf to 0.51316, saving model to T5_model.h5
16/16 [==============================] - 14s 790ms/step - loss: 1.0860 - accuracy: 0.5299 - val_loss: 0.6981 - val_accuracy: 0.5132
Epoch 2/50
16/16 [==============================] - ETA: 0s - loss: 0.6969 - accuracy: 0.5578
Epoch 2: val_accuracy improved from 0.51316 to 0.55263, saving model to T5_model.h5
16/16 [==============================] - 15s 922ms/step - loss: 0.6969 - accuracy: 0.5578 - val_loss: 0.6785 - val_accuracy: 0.5526
Epoch 3/50
16/16 [==============================] - ETA: 0s - loss: 0.6815 - accuracy: 0.5757
Epoch 3: val_accuracy improved from 0.55263 to 0.73684, saving model to T5_model.h5
16/16 [==============================] - 12s 765ms/step - loss: 0.6815 - accuracy: 0.5757 - val_loss: 0.6613 - val_accuracy: 0.7368
Epoch 4/50
16/16 [==============================] - ETA: 0s - loss: 0.6677 - accuracy: 0.5936
Epoch 4: val_accuracy did not improve from 0.73684
16/16 [==============================] - 12s 773ms/step - loss: 0.6677 - accuracy: 0.5936 - val_loss: 0.6584 - val_accuracy: 0.6184
Epoch 5/50
16/16 [==============================] - ETA: 0s - loss: 0.6649 - accuracy: 0.5837
Epoch 5: val_accuracy did not improve from 0.73684
16/16 [==============================] - 12s 719ms/step - loss: 0.6649 - accuracy: 0.5837 - val_loss: 0.6577 - val_accuracy: 0.5921
Epoch 6/50
16/16 [==============================] - ETA: 0s - loss: 0.6540 - accuracy: 0.6076
Epoch 6: val_accuracy did not improve from 0.73684
16/16 [==============================] - 12s 758ms/step - loss: 0.6540 - accuracy: 0.6076 - val_loss: 0.6577 - val_accuracy: 0.5921
Epoch 7/50
16/16 [==============================] - ETA: 0s - loss: 0.6496 - accuracy: 0.6295
Epoch 7: val_accuracy did not improve from 0.73684
16/16 [==============================] - 12s 745ms/step - loss: 0.6496 - accuracy: 0.6295 - val_loss: 0.6386 - val_accuracy: 0.6447
Epoch 8/50
16/16 [==============================] - ETA: 0s - loss: 0.6552 - accuracy: 0.5857
Epoch 8: val_accuracy did not improve from 0.73684
16/16 [==============================] - 12s 733ms/step - loss: 0.6552 - accuracy: 0.5857 - val_loss: 0.6507 - val_accuracy: 0.5921
Epoch 9/50
16/16 [==============================] - ETA: 0s - loss: 0.6452 - accuracy: 0.6036
Epoch 9: val_accuracy did not improve from 0.73684
16/16 [==============================] - 12s 744ms/step - loss: 0.6452 - accuracy: 0.6036 - val_loss: 0.6769 - val_accuracy: 0.6053
Epoch 10/50
16/16 [==============================] - ETA: 0s - loss: 0.6362 - accuracy: 0.6275
Epoch 10: val_accuracy did not improve from 0.73684
16/16 [==============================] - 12s 728ms/step - loss: 0.6362 - accuracy: 0.6275 - val_loss: 0.6735 - val_accuracy: 0.6053
Epoch 11/50
16/16 [==============================] - ETA: 0s - loss: 0.6243 - accuracy: 0.6633
Epoch 11: val_accuracy did not improve from 0.73684
16/16 [==============================] - 12s 738ms/step - loss: 0.6243 - accuracy: 0.6633 - val_loss: 0.6658 - val_accuracy: 0.6184
Epoch 12/50
16/16 [==============================] - ETA: 0s - loss: 0.6127 - accuracy: 0.6952
Epoch 12: val_accuracy did not improve from 0.73684
16/16 [==============================] - 12s 773ms/step - loss: 0.6127 - accuracy: 0.6952 - val_loss: 0.6584 - val_accuracy: 0.6316
Epoch 13/50
16/16 [==============================] - ETA: 0s - loss: 0.6077 - accuracy: 0.7052
Epoch 13: val_accuracy did not improve from 0.73684
16/16 [==============================] - 12s 738ms/step - loss: 0.6077 - accuracy: 0.7052 - val_loss: 0.6555 - val_accuracy: 0.6316
Epoch 14/50
16/16 [==============================] - ETA: 0s - loss: 0.6053 - accuracy: 0.7112
Epoch 14: val_accuracy did not improve from 0.73684
16/16 [==============================] - 12s 734ms/step - loss: 0.6053 - accuracy: 0.7112 - val_loss: 0.7090 - val_accuracy: 0.6184
Epoch 15/50
16/16 [==============================] - ETA: 0s - loss: 0.6050 - accuracy: 0.6952
Epoch 15: val_accuracy did not improve from 0.73684
16/16 [==============================] - 12s 738ms/step - loss: 0.6050 - accuracy: 0.6952 - val_loss: 0.6625 - val_accuracy: 0.6316
Epoch 16/50
16/16 [==============================] - ETA: 0s - loss: 0.6012 - accuracy: 0.7072
Epoch 16: val_accuracy did not improve from 0.73684
16/16 [==============================] - 12s 750ms/step - loss: 0.6012 - accuracy: 0.7072 - val_loss: 0.6720 - val_accuracy: 0.6316
Epoch 17/50
16/16 [==============================] - ETA: 0s - loss: 0.6007 - accuracy: 0.7112
Epoch 17: val_accuracy did not improve from 0.73684
16/16 [==============================] - 12s 726ms/step - loss: 0.6007 - accuracy: 0.7112 - val_loss: 0.6693 - val_accuracy: 0.6316
Epoch 18/50
16/16 [==============================] - ETA: 0s - loss: 0.5900 - accuracy: 0.7012
Epoch 18: val_accuracy did not improve from 0.73684
16/16 [==============================] - 12s 733ms/step - loss: 0.5900 - accuracy: 0.7012 - val_loss: 0.6641 - val_accuracy: 0.6447
Epoch 19/50
16/16 [==============================] - ETA: 0s - loss: 0.5905 - accuracy: 0.7092
Epoch 19: val_accuracy did not improve from 0.73684
16/16 [==============================] - 12s 730ms/step - loss: 0.5905 - accuracy: 0.7092 - val_loss: 0.6475 - val_accuracy: 0.6711
Epoch 20/50
16/16 [==============================] - ETA: 0s - loss: 0.5902 - accuracy: 0.6992
Epoch 20: val_accuracy did not improve from 0.73684
16/16 [==============================] - 12s 724ms/step - loss: 0.5902 - accuracy: 0.6992 - val_loss: 0.6631 - val_accuracy: 0.6711
Epoch 21/50
16/16 [==============================] - ETA: 0s - loss: 0.5828 - accuracy: 0.7151
Epoch 21: val_accuracy did not improve from 0.73684
16/16 [==============================] - 11s 711ms/step - loss: 0.5828 - accuracy: 0.7151 - val_loss: 0.6623 - val_accuracy: 0.6711
Epoch 22/50
16/16 [==============================] - ETA: 0s - loss: 0.5875 - accuracy: 0.7072
Epoch 22: val_accuracy did not improve from 0.73684
16/16 [==============================] - 11s 713ms/step - loss: 0.5875 - accuracy: 0.7072 - val_loss: 0.6572 - val_accuracy: 0.6579
Epoch 23/50
16/16 [==============================] - ETA: 0s - loss: 0.5823 - accuracy: 0.7171
Epoch 23: val_accuracy did not improve from 0.73684
16/16 [==============================] - 12s 736ms/step - loss: 0.5823 - accuracy: 0.7171 - val_loss: 0.6510 - val_accuracy: 0.6711
Epoch 23: early stopping

五、模型评估

1. Loss与Accuracy图

acc=history.history['accuracy']
val_acc=history.history['val_accuracy']

loss=history.history['loss']
val_loss=history.history['val_loss']

epochs_range=range(len(loss))

plt.figure(figsize=(12,4))
plt.subplot(1,2,1)
plt.plot(epochs_range,acc,label='Training Accuracy')
plt.plot(epochs_range,val_acc,label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1,2,2)
plt.plot(epochs_range,loss,label='Training Loss')
plt.plot(epochs_range,val_loss,label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

 运行结果:

2. 指定图片进行预测 

#加载效果最好的模型权重
model.load_weights('T5_model.h5')
from PIL import Image
import numpy as np

img=Image.open(r"D:\THE MNIST DATABASE\P5-data\test\nike\1.jpg")
image=tf.image.resize(img,[img_height,img_width])

img_array=tf.expand_dims(image,0)#/255.0

predictions=model.predict(img_array) #选用已经训练好的模型
print("预测结果为:",class_names[np.argmax(predictions)])

运行结果:

1/1 [==============================] - 0s 109ms/step
预测结果为: adidas

六、心得体会

在本次搭建的模型中添加了 EarlyStopping()方法,该方法有效的抑制了过拟合现象的出现,减少无用的训练轮次。

  • 24
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值