智能风控体系之Y定义与样本选择(A卡)

本文讨论了评分卡模型设计的关键步骤,包括确定Y变量(逾期概率预测)、定义好坏样本、表现期和观察期的选择。通过滚动率矩阵和vintage曲线,作者详细解释了如何定义好、坏、灰客户,并强调了模型训练过程中样本选择的重要性以及使用逻辑回归、Xgboost和LightGBM等模型的应用.

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评分卡模型设计里面,最重要的一环就是Y的定义和好坏样本的选择,即样本范围选择和Y变量确定。一般来说,产品评分卡开发需要有需求、设计、开发、测试、部署上线等过程。需要思考几个问题:

1.需要做几个评分卡模型,根据贷款产品的类型、场景、客群分类、数据可用性进行模型细分。

2.业务目标是什么?例如预测客群贷款后6个月内违约的概率,对违约高风险客户进行拦截。

3好坏客户如何定义,样本如何选择等问题。

为了解决以上的这些问题,需要确定几个内容(业务目标、表现期、观察点、观察期、逾期表现),主要通过滚动率矩阵、vintage曲线、产品制度来最终确定。

▍Y定义

业务目标:预测客群贷款后未来一段时间内可能逾期的概率,拦截逾期概率较高的客群。

好坏定义:通过滚动率矩阵分析,可以确认客群逾期到什么程度再还款的概率极低,一般客群逾期M2+就不再还款。定义坏客户为M2+,好客户为逾期0天。逾期在0~M2之间的客群就是灰客户。

图片

表现期定义:表现期就是vintage曲线未来一段时间内趋于稳定的长度,表现期就是业务放款后客群还款一段时间后,会完全暴露出好坏逾期情况,即需要多久后客群会暴露出好坏表现。例如12期的贷款产品,一般表现期为9期。业务目标就是预测客群贷款后还款9个月内可能逾期的概率。那表现期不足9期的客户就是灰样本。

图片

观察点定义:贷款A卡评分模型的观察点一般就是贷款申请时点。

图片

观察期定义:观察期一般用来提取样本的预测特征变量,观察期一般要长些,一般是近2年,例如部分征信指标为近24个月银行贷款查询次数等。

▍剔除灰样本

1.剔除被前置风控规则命中的样本;

2.剔除表现期特殊客群的样本

3.剔除未提款客群的样本

4.剔除表现期不足9个月客群的样本

5.剔除逾期状态不足M2+客群的样本

注释:另外需要考虑客群是否需要分群建模。

▍样本选择与Y定义

样本一般分为训练集、测试集、时间外验证集,进行模型的训练、参数选择、验证。对于Y目标变量的定义不同,建设出来的A卡评分模型应用场景就会不同,那么选择样本客群就会不一样。评分模型建设前提,就是未来客群样本分布与历史进件的客群样本分布保持一致且独立。评分模型才会有效地准确预测未来进件客群的违约概率。

常见的Y定义,例如A卡根据Y的表现期分前3期(偏欺诈)和前6期、前9期去做不同的组合A卡;坏客户定义历史最大逾期天数15+或30+;基于组合矩阵来进行客户综合的风险评级。对Y变量给予不同的短中长期的表现期,建设不同组合的A卡评分,建设A卡评分矩阵,可以更加精细化管理进件客群。建设评分卡模型主要基于逻辑回归、Xgboost和LightGBM机器学习模型。

图片

<think>嗯,用户想了解决策树分析法的原理和应用,特别是机器学习数据挖掘相关的内容。首先,我需要明确决策树的基本概念。决策树是一种树形结构,用于分类和回归任务。根据引用[1],决策树学习是通过数据生成决策树的技术,属于数据挖掘的一种方法。那原理部分需要涵盖节点分裂、属性选择准则,比如信息增益、基尼系数这些关键点。 接下来是应用场景。用户提到机器学习数据挖掘,所以需要举出具体的例子,比如金融险评估、医疗诊断等,同时结合引用[2]中的数据挖掘定义,说明决策树如何帮助抽取潜在知识。可能需要提到决策树在数据挖掘中的优势,比如可解释性强,处理非线性数据的能力。 然后要考虑用户的潜在需求。用户可能不仅需要基础原理,还想知道实际应用中的注意事项或优化方法。比如,如何避免过拟合,剪枝技术,或者特征选择的重要性,这部分可以参考引用[3]中关于特征提取和样本数据选择的建议。 另外,用户的问题涉及原理和应用,所以回答的结构需要清晰分块。可能需要先介绍原理,再讲应用,最后关联到机器学习数据挖掘中的角色。同时,确保使用正确的中文术语,避免翻译腔,保持自然流畅。 还要检查是否需要补充其他相关信息,比如决策树的优缺点,或者其他算法的对比,但根据用户的问题,可能不需要深入这些方面。但应用部分可以扩展一些实际案例,比如电商客户分类、信用评分等,让内容更具体。 最后,确保引用正确。引用[1]提到决策树学习,引用[2]关于数据挖掘定义,引用[3]的特征提取和样本选择。这些需要自然地融入回答中,帮助支撑内容,同时添加引用标识。比如在解释特征选择时,可以提到引用[3]中的特征提取方法。 可能还需要生成相关问题,比如决策树的优化方法、其他算法的比较、实际应用中的挑战等。这些问题要围绕用户的主题展开,帮助他们深入理解。 总结一下,回答的结构大致分为原理、应用、在机器学习数据挖掘中的角色,每个部分结合引用内容,确保信息准确且相关。同时,语言要简洁明了,符合中文表达习惯。</think>### 决策树分析法原理应用 #### 一、原理剖析 1. **核心逻辑** 决策树通过递归分割数据建立树形结构,每个节点代表一个特征属性的判断条件,叶子节点对应最终分类或回归结果。其核心公式为信息增益(ID3算法)或基尼不纯度(CART算法),例如信息增益计算公式: $$IG(S,A) = H(S) - \sum_{v\in Values(A)} \frac{|S_v|}{|S|}H(S_v)$$ 其中$H(S)$为熵值,$A$为特征属性[^1]。 2. **构建过程** - **根节点选择**:通过计算所有特征的信息增益率或基尼指数,选择区分度最高的属性 - **递归分裂**:对子节点重复上述过程,直到满足停止条件(如纯度达标、深度限制等) - **剪枝优化**:通过预剪枝(提前终止分裂)或后剪枝(生成完整树后修剪)防止过拟合[^3] #### 二、应用场景 1. **金融** 银行信用审批通过收入、负债等特征构建决策树模型,实现自动化险评估[^2] 2. **医疗诊断** 根据症状指标(如体温、白细胞计数)建立分类树,辅助疾病类型判断 3. **工业制造** 通过传感器数据(温度、振动频率)预测设备故障概率 ```python # 决策树分类示例(scikit-learn实现) from sklearn.tree import DecisionTreeClassifier clf = DecisionTreeClassifier(criterion='entropy', max_depth=3) clf.fit(X_train, y_train) ``` #### 三、在机器学习数据挖掘中的角色 1. **数据挖掘核心工具** 作为非平凡知识发现手段(引用[2]定义),擅长处理带缺失值的非结构化数据 2. **特征工程优势** 自动选择重要特征(参考引用[3]特征提取原则),通过树结构直观展示决策路径 3. **模型集成基础** 作为随机森林、GBDT等集成算法的基学习器,提升整体预测精度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值