RNN/LSTM初认识

RNN

用于处理序列信息,这里的序列是指单个个体之间有联系,比如说一句话(词汇之间互有联系),一个视频(有很多相关联的帧)。因为是重复地使用同一个网络,所以也被称为递归网络。

RNN的结构

RNN
x:输入
o:输出
s:隐藏层
U,V,M:权重矩阵
上图忽略了权重!

RNN的特点

上述的U,V,M是共享的,打个比方,就是处理一个句子,句子不动,而RNN像一个滑窗一样从句头滑到句尾。容易梯度消失或爆炸。CNN 是在空间上共享参数,RNN 是在时间上(顺序上)共享参数。在这里插入图片描述

变式与推导

原理分析代码变式可以参见这篇文章 你还没有看 !!有空记录
https://zybuluo.com/hanbingtao/note/541458

LSTM

解决RNN的问题 引出了LSTM

LSTM的结构

在这里插入图片描述
在这里插入图片描述
z是计算得到的当前输入内容
zi是选择记忆信息的门控
zf是选择忘记的门控
zo是选择输出的门控
ct是当前阶段单元状态
yt是当前阶段输出
门控都用的是sigmoid函数,在0~1之间;z用的是tanh函数,-1 ~ 1之间。
在这里插入图片描述

阶段描述输入输出
选择忘记控制上一个状态的ct-1哪些需要留哪些需要忘门控zf /上一个状态的ct-1ct-1的有用部分
选择记忆选择当前输入的有用信息门控zi/当前输入z当前输入的有用信息 隐藏操作
输出得到当前状态的输出门控zo/ct当前阶段输出yt/

ConvLSTM

ConvLSTM核心本质还是和LSTM一样,将上一层的输出作下一层的输入。不同的地方在于加上卷积操作之后,为不仅能够得到时序关系,还能够像卷积层一样提取特征,提取空间特征。这样就能够得到时空特征。并且将状态与状态之间的切换也换成了卷积计算。
关于时空特征的理解:
Temporal characterization occurs when you have a series of images taken at different time. Correlations between the images are often used to monitor the dynamic changes of the object.

Spatial characterization applies when you are analyzing one image. It includes but not limited to the coordinates, intensity, gradient, resolution, to name only a few.

ConvLSTM与LSTM之间的区别

LSTM:
在这里插入图片描述在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
ConvLSTM:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
公式来源:: https://arxiv.org/pdf/1506.04214v1.pdf.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值