【论文速读】LoRA:Low-rank adaptation of large language models

2106.09685v2

https://github.com/microsoft/LoRA

摘要

自然语言处理的一个重要范例包括对一般领域数据进行大规模的预训练和对特定任务或领域的适应。当我们对更大的模型进行预训练时,重新训练所有模型参数的完全微调就变得不那么可行了。以GPT-3 175B为例——部署微调模型的独立实例,每个模型都有175B参数,这是非常昂贵的。我们提出了Low-Rank Adaptation,或称LoRA,它冻结了预先训练的模型权值,并将可训练的秩分解矩阵注入变压器架构的每一层,大大减少了下游任务的可训练参数的数量。与使用Adam进行微调的GPT-3 175B相比,LoRA可以减少可训练参数的数量10000倍。

导言

Adma微调的主要缺点是,新模型包含的参数与原始模型一样多。Aghajanyan的研究表明:预训练模型拥有极小的内在维度(instrisic dimension),即在降维或者压缩数据过程中,为了让你的数据特征最大程度的保持,你最低限度需要保留哪些features。**同时Aghajanyan发现在预训练后,越大的模型有越小的内在维度,这也解释了为何大模型都拥有很好的few-shot能力。**我们假设模型适应过程中权重的变化也具有较低的“内在秩”,这导致了我们提出的低秩适应(LoRA)方法。LoRA允许我们通过优化适应过程中密集层变化的秩分解矩阵来间接训练神经网络中的一些密集层,同时保持预先训练的权值冻结,只训练A和B。

在这里插入图片描述

在这里插入图片描述

LoRA有几个关键的优势:

  • 一个预先训练过的模型可以被共享,并用于为不同的任务构建许多小型的LoRA模块。我们可以冻结共享模型,并且通过替换图1中的矩阵A和矩阵B来有效地切换任务,从而显著地减少了存储需求和任务切换开销。

  • 当使用自适应优化器时,LoRA使训练效率提高,并将硬件进入门槛降低了3倍,因为我们不需要计算梯度或维护大多数参数的优化器状态。相反,我们只优化注入的,更小的低秩矩阵。

  • 我们简单的线性设计允许我们在部署时将可训练矩阵与冻结权值合并,通过构造,与完全微调的模型相比,不引入推理延迟。

  • LoRA与许多先前的方法正交,可以与其中许多方法结合,比如prefifix-tuning(前缀调优)。

使用LORA,训练参数仅为整体参数的万分之一、GPU显存使用量减少2/3且不会引入额外的推理耗时

LORA为何有效?

通过大量的对比实验,作者证明了LORA的有效性,但是作者希望进一步解释这种从下游任务中学到的低秩适应(low-rank adaptation)的特性。为此,作者提出了三个问题:

### GNSS 中多普勒、载波相位的概念及应用 #### 1. 多普勒效应及其在GNSS中的意义 在卫星导航系统中,载波多普勒指的是由于相对运动引起的接收到的载波频率的变化。这种变化能够反映用户相对于卫星的速度。具体而言,当用户设备与卫星之间存在相对运动时,接收端检测到的载波频率会发生偏移,该现象被称为载波多普勒效应[^1]。 #### 2. 定义及其重要性 是指从地面站到空间飞行器之间的几何路径长度加上各种误差成分的结果。它本质上是通过测量信号传输时间并乘以光速来估算的离值。然而,实际操作过程中,这个数值包含了多种因素造成的偏差,比如大气延迟、钟差等。尽管如此,在没有其他更精准数据的情况下,仍然是确定位置的关键参数之一。 #### 3. 载波相位测量的特点 相比于基于C/A码或P(Y)码测定的粗略离——即所谓的“”,载波相位提供了更为精细的位置信息。这是因为载波波长远小于扩频码周期,从而使得其对应的测精度更高。不过,使用这种方法面临的主要挑战在于如何解决整周模糊度问题,也就是不知道确切有多少完整的波长存在于两地间。一旦解决了这个问题,就能显著提高定位准确性[^2]。 #### 4. 组合技术:相位平滑的应用 为了克服单一方法存在的局限性,工程师们开发出了结合两者优点的技术方案—相位平滑。这项技术充分利用了载波相位较高的分辨率以及易于获取的优势,经过适当处理后可以获得更加可靠且准确的位置估计。特别是对于动态环境下的快速收敛和平稳跟踪具有重要意义[^3]。 ```python def phase_smoothed_pseudorange(pseudo_range, carrier_phase): """ 计算相位平滑 参数: pseudo_range (float): 初始测量值 carrier_phase (float): 同步时间段内的累积载波相位变化 返回: float: 平滑后的 """ smoothed_value = pseudo_range + carrier_phase / wavelength return smoothed_value ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值