LinearRegression 线性回归算法

线性回归

假设数据集为:
D = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯   , ( x N , y N ) } \mathcal{D}=\{(x_1, y_1),(x_2, y_2),\cdots,(x_N, y_N)\} D={(x1,y1),(x2,y2),,(xN,yN)}
后面我们记:
X = ( x 1 , x 2 , ⋯   , x N ) T , Y = ( y 1 , y 2 , ⋯   , y N ) T X=(x_1,x_2,\cdots,x_N)^T,Y=(y_1,y_2,\cdots,y_N)^T X=(x1,x2,,xN)T,Y=(y1,y2,,yN)T
线性回归假设:
f ( w ) = w T x f(w)=w^Tx f(w)=wTx

最小二乘法

对这个问题,采用二范数定义的平方误差来定义损失函数:
L ( w ) = ∑ i = 1 N ∣ ∣ w T x i − y i ∣ ∣ 2 2 L(w)=\sum\limits_{i=1}^N||w^Tx_i-y_i||^2_2 L(w)=i=1NwTxiyi22
展开得到:
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ L(w)&=(w^Tx_1-…
最小化这个值的   w ^  \hat{w}  w^
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ \hat{w}=\matho…
这个式子中 ( X T X ) − 1 X T (X^TX)^{-1}X^T (XTX)1XT 又被称为伪逆。对于行满秩或者列满秩的 X X X,可以直接求解,但是对于非满秩的样本集合,需要使用奇异值分解(SVD)的方法,对 X X X 求奇异值分解,得到
X = U Σ V T X=U\Sigma V^T X=UΣVT
于是:
X + = V Σ − 1 U T X^+=V\Sigma^{-1}U^T X+=VΣ1UT
在几何上,最小二乘法相当于模型(这里就是直线)和试验值的距离的平方求和,假设我们的试验样本张成一个 p p p 维空间(满秩的情况): X = S p a n ( x 1 , ⋯   , x N ) X=Span(x_1,\cdots,x_N) X=Span(x1,,xN),而模型可以写成 f ( w ) = X β f(w)=X\beta f(w)=Xβ,也就是 x 1 , ⋯   , x N x_1,\cdots,x_N x1,,xN 的某种组合,而最小二乘法就是说希望 Y Y Y 和这个模型距离越小越好,于是它们的差应该与这个张成的空间垂直:
X T ⋅ ( Y − X β ) = 0 ⟶ β = ( X T X ) − 1 X T Y X^T\cdot(Y-X\beta)=0\longrightarrow\beta=(X^TX)^{-1}X^TY XT(YXβ)=0β=(XTX)1XTY

噪声为高斯分布的 MLE

对于一维的情况,记 y = w T x + ϵ , ϵ ∼ N ( 0 , σ 2 ) y=w^Tx+\epsilon,\epsilon\sim\mathcal{N}(0,\sigma^2) y=wTx+ϵ,ϵN(0,σ2),那么 y ∼ N ( w T x , σ 2 ) y\sim\mathcal{N}(w^Tx,\sigma^2) yN(wTx,σ2)。代入极大似然估计中:
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ L(w)=\log p(Y|…
这个表达式和最小二乘估计得到的结果一样。

权重先验也为高斯分布的 MAP

取先验分布 w ∼ N ( 0 , σ 0 2 ) w\sim\mathcal{N}(0,\sigma_0^2) wN(0,σ02)。于是: 
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ \hat{w}=\matho…
这里省略了 X X X p ( Y ) p(Y) p(Y) w w w 没有关系,同时也利用了上面高斯分布的 MLE的结果。

我们将会看到,超参数 σ 0 \sigma_0 σ0的存在和下面会介绍的 Ridge 正则项可以对应,同样的如果将先验分布取为 Laplace 分布,那么就会得到和 L1 正则类似的结果。

正则化

在实际应用时,如果样本容量不远远大于样本的特征维度,很可能造成过拟合,对这种情况,我们有下面三个解决方式:

  1. 加数据
  2. 特征选择(降低特征维度)如 PCA 算法。
  3. 正则化

正则化一般是在损失函数(如上面介绍的最小二乘损失)上加入正则化项(表示模型的复杂度对模型的惩罚),下面我们介绍一般情况下的两种正则化框架。
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ L1&:\mathop{ar…
下面对最小二乘误差分别分析这两者的区别。

L1 Lasso

L1正则化可以引起稀疏解。

从最小化损失的角度看,由于 L1 项求导在0附近的左右导数都不是0,因此更容易取到0解。

从另一个方面看,L1 正则化相当于:
a r g m i n w L ( w ) s . t . ∣ ∣ w ∣ ∣ 1 < C \mathop{argmin}\limits_wL(w)\\ s.t. ||w||_1\lt C wargminL(w)s.t.w1<C
我们已经看到平方误差损失函数在 w w w 空间是一个椭球,因此上式求解就是椭球和 ∣ ∣ w ∣ ∣ 1 = C ||w||_1=C w1=C的切点,因此更容易相切在坐标轴上。

L2 Ridge

KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ \hat{w}=\matho…

可以看到,这个正则化参数和前面的 MAP 结果不谋而合。利用2范数进行正则化不仅可以是模型选择 w w w 较小的参数,同时也避免   X T X  X^TX  XTX不可逆的问题。

小结

线性回归模型是最简单的模型,但是麻雀虽小,五脏俱全,在这里,我们利用最小二乘误差得到了闭式解。同时也发现,在噪声为高斯分布的时候,MLE 的解等价于最小二乘误差,而增加了正则项后,最小二乘误差加上 L2 正则项等价于高斯噪声先验下的 MAP解,加上 L1 正则项后,等价于 Laplace 噪声先验。

传统的机器学习方法或多或少都有线性回归模型的影子:

  1. 线性模型往往不能很好地拟合数据,因此有三种方案克服这一劣势:
    1. 对特征的维数进行变换,例如多项式回归模型就是在线性特征的基础上加入高次项。
    2. 在线性方程后面加入一个非线性变换,即引入一个非线性的激活函数,典型的有线性分类模型如感知机。
    3. 对于一致的线性系数,我们进行多次变换,这样同一个特征不仅仅被单个系数影响,例如多层感知机(深度前馈网络)。
  2. 线性回归在整个样本空间都是线性的,我们修改这个限制,在不同区域引入不同的线性或非线性,例如线性样条回归和决策树模型。
  3. 线性回归中使用了所有的样本,但是对数据预先进行加工学习的效果可能更好(所谓的维数灾难,高维度数据更难学习),例如 PCA 算法和流形学习。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值