人工智能神经网络bp算法及其数学演算过程

本文详细介绍了BP算法在神经网络中的应用,包括预备知识如sigmoid函数和梯度下降策略,以及前馈计算(FP过程)和反向传播(BP过程)的详细步骤。通过数学演算展示了权重和偏置的更新过程,以此实现神经网络的训练和预测精度提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

BP 算法

预备知识

在开始之前,首先需要补充一点预备知识。

1. 激活函数sigmoid函数:

sigmoid 函数是人工智能神经网络中最常使用的一类激活函数,其数学表达式为:
sigmoid函数
sigmoid函数有一个重要的性质:f’(x) = f(x)[1-f(x)],这个性质在我们求导的过程中起了很大的作用。

2. 梯度下降策略

梯度下降策略
其中,学习率一塔我们设定为0.5

接下来我们进入正题,BP算法总共分为两个部分,第一个部分是FP(前馈计算计算误差)过程,我们用来计算误差;第二个部分是BP(反馈计算更新权重),我们用来更新权重W;

一、 FP过程

在这里插入图片描述
想必大家都已经了解到神经网络的结构,这里我就不做过多的解释了,其中l1, l2是这个神经网络的

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值