BP 算法
预备知识
在开始之前,首先需要补充一点预备知识。
1. 激活函数sigmoid函数:
sigmoid 函数是人工智能神经网络中最常使用的一类激活函数,其数学表达式为:
sigmoid函数有一个重要的性质:f’(x) = f(x)[1-f(x)],这个性质在我们求导的过程中起了很大的作用。
2. 梯度下降策略
其中,学习率一塔我们设定为0.5
接下来我们进入正题,BP算法总共分为两个部分,第一个部分是FP(前馈计算计算误差)过程,我们用来计算误差;第二个部分是BP(反馈计算更新权重),我们用来更新权重W;
一、 FP过程
想必大家都已经了解到神经网络的结构,这里我就不做过多的解释了,其中l1, l2是这个神经网络的