来源:侯忠生教授的《无模型自适应控制:理论与应用》(2013年科学出版社)。
👉对应书本 7.2 单输入单输出系统(SISO)紧格式动态线性化(CFDL) 和 4.4 单输入单输出系统(SISO)紧格式动态线性化(CFDL)的无模型自适应迭代学习控制(MFAILC)
学习控制律
数据模型:
y
(
k
+
1
,
i
)
=
y
(
k
+
1
,
i
−
1
)
+
ϕ
c
(
k
,
i
)
Δ
u
(
k
,
i
)
y\left( {k + 1,i} \right) = y\left( {k + 1,i - 1} \right) + \phi_{c}(k,i)\Delta u(k,i)
y(k+1,i)=y(k+1,i−1)+ϕc(k,i)Δu(k,i)
给定期望轨迹 y d ( k ) , k = 0 , 1 , … T y_d (k),k={0,1,…T} yd(k),k=0,1,…T,控制目标是寻找合适的控制输入,使得跟踪误差 e ( k + 1 , i ) = y d ( k + 1 ) − y ( k + 1 , i ) e(k+1,i)=y_d (k+1)-y(k+1,i) e(k+1,i)=yd(k+1)−y(k+1,i) 在迭代次数i趋于无穷时收敛为0.
控制律:
u
(
k
,
i
)
=
u
(
k
,
i
−
1
)
+
ρ
ϕ
c
(
k
,
i
)
∣
ϕ
c
(
k
,
i
)
∣
2
+
λ
e
(
k
+
1
,
i
−
1
)
u\left( {k,i} \right) = u\left( {k,i - 1} \right) + \frac{\rho\phi_{c}\left( {k,i} \right)}{\left| \phi_{c}\left( {k,i} \right) \right|^{2} + \lambda}e\left( {k + 1,i - 1} \right)
u(k,i)=u(k,i−1)+∣ϕc(k,i)∣2+λρϕc(k,i)e(k+1,i−1)
PPD参数估计算法
ϕ c ^ ( k ) = ϕ c ^ ( k − 1 ) + η Δ u ( k − 1 ) μ + Δ u ( k − 1 ) 2 [ Δ y ( k ) − ϕ c ^ ( k − 1 ) Δ u ( k − 1 ) ] \hat{\phi_{c}}(k) = \hat{\phi_{c}}\left( {k - 1} \right) + \frac{\eta\Delta u\left( {k - 1} \right)}{\mu + {\Delta u\left( {k - 1} \right)}^{2}}\left\lbrack \Delta y(k) - \hat{\phi_{c}}(k - 1)\Delta u\left( {k - 1} \right) \right\rbrack ϕc^(k)=ϕc^(k−1)+μ+Δu(k−1)2ηΔu(k−1)[Δy(k)−ϕc^(k−1)Δu(k−1)]
其中,μ>0为权重因子,为了让控制算法更具一般性,引入步长因子 η∈(0,1] .
PPD参数重置算法
如果
∣
ϕ
c
^
(
k
,
i
)
∣
≤
ε
\left| {\hat{\phi_{c}}(k,i)} \right| \leq \varepsilon
ϕc^(k,i)
≤ε
或
∣
Δ
u
(
k
,
i
−
1
)
∣
≤
ε
\left| {\Delta u\left( {k ,i- 1} \right)} \right| \leq \varepsilon
∣Δu(k,i−1)∣≤ε
或
s
i
g
n
(
ϕ
c
^
(
k
,
i
)
)
≠
s
i
g
n
(
ϕ
c
^
(
k
,
1
)
)
sign\left( {\hat{\phi_{c}}(k,i)} \right) \neq sign\left( {\hat{\phi_{c}}(k,1)} \right)
sign(ϕc^(k,i))=sign(ϕc^(k,1))
则
ϕ
c
^
(
k
,
i
)
=
ϕ
c
^
(
k
,
1
)
\hat{\phi_{c}}(k,i) = \hat{\phi_{c}}(k,1)
ϕc^(k,i)=ϕc^(k,1)
算法重置机制的引入是为了使PPD估计算法具有更强的对时变参数的跟踪能力。