【MFAC】基于紧格式动态线性化的无模型自适应迭代学习控制

来源:侯忠生教授的《无模型自适应控制:理论与应用》(2013年科学出版社)。

👉对应书本 7.2 单输入单输出系统(SISO)紧格式动态线性化(CFDL) 和 4.4 单输入单输出系统(SISO)紧格式动态线性化(CFDL)的无模型自适应迭代学习控制(MFAILC)

学习控制律

数据模型:
y ( k + 1 , i ) = y ( k + 1 , i − 1 ) + ϕ c ( k , i ) Δ u ( k , i ) y\left( {k + 1,i} \right) = y\left( {k + 1,i - 1} \right) + \phi_{c}(k,i)\Delta u(k,i) y(k+1,i)=y(k+1,i1)+ϕc(k,i)Δu(k,i)

给定期望轨迹 y d ( k ) , k = 0 , 1 , … T y_d (k),k={0,1,…T} yd(k),k=0,1,T,控制目标是寻找合适的控制输入,使得跟踪误差 e ( k + 1 , i ) = y d ( k + 1 ) − y ( k + 1 , i ) e(k+1,i)=y_d (k+1)-y(k+1,i) e(k+1,i)=yd(k+1)y(k+1,i) 在迭代次数i趋于无穷时收敛为0.

在这里插入图片描述

控制律:
u ( k , i ) = u ( k , i − 1 ) + ρ ϕ c ( k , i ) ∣ ϕ c ( k , i ) ∣ 2 + λ e ( k + 1 , i − 1 ) u\left( {k,i} \right) = u\left( {k,i - 1} \right) + \frac{\rho\phi_{c}\left( {k,i} \right)}{\left| \phi_{c}\left( {k,i} \right) \right|^{2} + \lambda}e\left( {k + 1,i - 1} \right) u(k,i)=u(k,i1)+ϕc(k,i)2+λρϕc(k,i)e(k+1,i1)

PPD参数估计算法

在这里插入图片描述

ϕ c ^ ( k ) = ϕ c ^ ( k − 1 ) + η Δ u ( k − 1 ) μ + Δ u ( k − 1 ) 2 [ Δ y ( k ) − ϕ c ^ ( k − 1 ) Δ u ( k − 1 ) ] \hat{\phi_{c}}(k) = \hat{\phi_{c}}\left( {k - 1} \right) + \frac{\eta\Delta u\left( {k - 1} \right)}{\mu + {\Delta u\left( {k - 1} \right)}^{2}}\left\lbrack \Delta y(k) - \hat{\phi_{c}}(k - 1)\Delta u\left( {k - 1} \right) \right\rbrack ϕc^(k)=ϕc^(k1)+μ+Δu(k1)2ηΔu(k1)[Δy(k)ϕc^(k1)Δu(k1)]

其中,μ>0为权重因子,为了让控制算法更具一般性,引入步长因子 η∈(0,1] .

PPD参数重置算法

如果
∣ ϕ c ^ ( k , i ) ∣ ≤ ε \left| {\hat{\phi_{c}}(k,i)} \right| \leq \varepsilon ϕc^(k,i) ε

∣ Δ u ( k , i − 1 ) ∣ ≤ ε \left| {\Delta u\left( {k ,i- 1} \right)} \right| \leq \varepsilon Δu(k,i1)ε

s i g n ( ϕ c ^ ( k , i ) ) ≠ s i g n ( ϕ c ^ ( k , 1 ) ) sign\left( {\hat{\phi_{c}}(k,i)} \right) \neq sign\left( {\hat{\phi_{c}}(k,1)} \right) sign(ϕc^(k,i))=sign(ϕc^(k,1))

ϕ c ^ ( k , i ) = ϕ c ^ ( k , 1 ) \hat{\phi_{c}}(k,i) = \hat{\phi_{c}}(k,1) ϕc^(k,i)=ϕc^(k,1)

算法重置机制的引入是为了使PPD估计算法具有更强的对时变参数的跟踪能力。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不雨_亦潇潇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值