昇思25天学习打卡营第5天|网络构建

26 篇文章 0 订阅
14 篇文章 0 订阅

☀️ 最近报名参加了昇思25天学习打卡训练营
☀️ 第1天初步学习了MindSpore的基本操作
☀️ 第2天初步学习了张量Tensor
☀️ 第3天初步学习了数据集Dataset
☀️ 第4天初步学习了数据变换Transforms
☀️ 第5天学习 初学入门 / 初学教程 / 06-网络构建Transforms

1. 代码跑通流程

神经网络模型是由神经网络层和Tensor操作构成的,mindspore.nn提供了常见神经网络层的实现,在MindSpore中,Cell类是构建所有网络的基类,也是网络的基本单元。一个神经网络模型表示为一个Cell,它由不同的子Cell构成。使用这样的嵌套结构,可以简单地使用面向对象编程的思维,对神经网络结构进行构建和管理。

下面我们将构建一个用于Mnist数据集分类的神经网络模型。

1.1 导入库

import mindspore
from mindspore import nn, ops

1.2 定义模型类

当我们定义神经网络时,可以继承 nn.Cell 类,在__init__方法中进行子Cell的实例化和状态管理,在 construct 方法中实现Tensor操作。

construct 意为神经网络(计算图)构建,相关内容详见使用静态图加速

AI编译框架分为两种运行模式,分别是动态图模式以及静态图模式。 MindSpore默认情况下是以动态图模式运行,但也支持手工切换为静态图模式。
动态图的特点是计算图的构建和计算同时发生(Define by run),其符合Python的解释执行方式,在计算图中定义一个Tensor时,其值就已经被计算且确定,因此在调试模型时较为方便,能够实时得到中间结果的值,但由于所有节点都需要被保存,导致难以对整个计算图进行优化。在MindSpore中,动态图模式又被称为PyNative模式。由于动态图的解释执行特性,在脚本开发和网络流程调试过程中,推荐使用动态图模式进行调试。
相较于动态图而言,静态图的特点是将计算图的构建和实际计算分开(Define and run)。
在MindSpore中,静态图模式又被称为Graph模式,在Graph模式下,基于图优化、计算图整图下沉等技术,编译器可以针对图进行全局的优化,获得较好的性能,因此比较适合网络固定且需要高性能的场景。

from mindspore import nn  
  
# 定义一个名为Network的神经网络类,继承自nn.Cell  
class Network(nn.Cell):  
    # 初始化方法  
    def __init__(self):  
        # 调用父类nn.Cell的初始化方法  
        super().__init__()  
          
        # 定义一个flatten层,用于将多维的输入数据展平为一维数据  
        self.flatten = nn.Flatten()  
          
        # 定义一个SequentialCell,它是一个顺序容器,可以包含多个层,数据会按照顺序依次通过这些层  
        self.dense_relu_sequential = nn.SequentialCell(  
            # 第一个全连接层(Dense),输入特征数为28*28(例如,MNIST图像的大小),输出特征数为512  
            # weight_init和bias_init参数指定了权重和偏置的初始化方式
            # 随机生成权重矩阵的初始值,偏置项初始化为零  
            nn.Dense(28*28, 512, weight_init="normal", bias_init="zeros"),  
              
            # ReLU激活函数  
            nn.ReLU(),  
              
            # 第二个全连接层,输入和输出特征数均为512  
            nn.Dense(512, 512, weight_init="normal", bias_init="zeros"),  
              
            # ReLU激活函数  
            nn.ReLU(),  
              
            # 第三个全连接层,作为输出层,输入特征数为512,输出特征数为10(例如,用于分类10个类别的MNIST数据集)  
            nn.Dense(512, 10, weight_init="normal", bias_init="zeros")  
        )  
  
    # 前向传播方法,MindSpore中使用construct方法来实现  
    def construct(self, x):  
        # 将输入数据x通过flatten层展平  
        x = self.flatten(x)  
          
        # 将展平后的数据x通过dense_relu_sequential层(包含多个全连接层和ReLU激活函数)  
        # 得到logits,即网络的输出值,通常用于分类任务中的概率值或得分  
        logits = self.dense_relu_sequential(x)  
          
        # 返回logits作为网络的输出  
        return logits  

construct 方法定义了网络的前向传播过程。当数据 x 被传入Network实例时,它首先被 flatten 层展平,然后经过 dense_relu_sequential 层(其中包含3个全连接层和2个ReLU激活函数),最终得到输出 logits。这个 logits 可以被用于进一步的操作,如计算损失、进行softmax 操作以得到概率分布等。

构建完成后,实例化 Network 对象,并查看其结构。

model = Network()
print(model)

输出:

Network<
  (flatten): Flatten<>
  (dense_relu_sequential): SequentialCell<
    (0): Dense<input_channels=784, output_channels=512, has_bias=True>
    (1): ReLU<>
    (2): Dense<input_channels=512, output_channels=512, has_bias=True>
    (3): ReLU<>
    (4): Dense<input_channels=512, output_channels=10, has_bias=True>
    >
  >

在这里插入图片描述

我们构造一个输入数据,直接调用模型,可以获得一个十维的Tensor输出,其包含每个类别的原始预测值。

model.construct() 方法不可直接调用。

X = ops.ones((1, 28, 28), mindspore.float32)
logits = model(X)
# print logits
logits

输出:

Tensor(shape=[1, 10], dtype=Float32, value=
[[-1.34644797e-03,  1.29277352e-04,  1.17136752e-02 ...  5.12425695e-03, -2.85935123e-03,  1.22657903e-02]])

在此基础上,我们通过一个 nn.Softmax 层实例来获得预测概率。

pred_probab = nn.Softmax(axis=1)(logits)
y_pred = pred_probab.argmax(1)
print(f"Predicted class: {y_pred}")

输出:

Predicted class: [9]

1.3 模型层

本节中我们分解上节构造的神经网络模型中的每一层。首先我们构造一个shape为(3, 28, 28)的随机数据(3个28x28的图像),依次通过每一个神经网络层来观察其效果。

input_image = ops.ones((3, 28, 28), mindspore.float32)
print(input_image.shape)

输出:

(3, 28, 28)

1️⃣ nn.Flatten

实例化 nn.Flatten 层,将28x28的2D张量转换为784大小的连续数组。

flatten = nn.Flatten()
flat_image = flatten(input_image)
print(flat_image.shape)

输出:

(3, 784)

将输入数据从多维(例如,图像的高×宽×通道)转换为一维向量,以便输入到后续的全连接层。

2️⃣ nn.Dense

nn.Dense为全连接层,其使用权重和偏差对输入进行线性变换。

layer1 = nn.Dense(in_channels=28*28, out_channels=20)
hidden1 = layer1(flat_image)
print(hidden1.shape)

输出:

(3, 20)

3️⃣ nn.ReLU

nn.ReLU层给网络中加入非线性的激活函数,帮助神经网络学习各种复杂的特征。

print(f"Before ReLU: {hidden1}\n\n")
hidden1 = nn.ReLU()(hidden1)
print(f"After ReLU: {hidden1}")

输出:

Before ReLU: [[ 0.6843467   0.259497   -0.25782263  0.6184629   0.6070477  -0.73334247
   0.74973434  0.45182937 -0.23277852  0.7250475  -0.52080756 -0.15784171
   0.01202491 -0.60827506  0.8921455   0.449151    0.1737952   0.8706826
  -0.08334174 -0.7448301 ]
 [ 0.6843467   0.259497   -0.25782263  0.6184629   0.6070477  -0.73334247
   0.74973434  0.45182937 -0.23277852  0.7250475  -0.52080756 -0.15784171
   0.01202491 -0.60827506  0.8921455   0.449151    0.1737952   0.8706826
  -0.08334174 -0.7448301 ]
 [ 0.6843467   0.259497   -0.25782263  0.6184629   0.6070477  -0.73334247
   0.74973434  0.45182937 -0.23277852  0.7250475  -0.52080756 -0.15784171
   0.01202491 -0.60827506  0.8921455   0.449151    0.1737952   0.8706826
  -0.08334174 -0.7448301 ]]


After ReLU: [[0.6843467  0.259497   0.         0.6184629  0.6070477  0.
  0.74973434 0.45182937 0.         0.7250475  0.         0.
  0.01202491 0.         0.8921455  0.449151   0.1737952  0.8706826
  0.         0.        ]
 [0.6843467  0.259497   0.         0.6184629  0.6070477  0.
  0.74973434 0.45182937 0.         0.7250475  0.         0.
  0.01202491 0.         0.8921455  0.449151   0.1737952  0.8706826
  0.         0.        ]
 [0.6843467  0.259497   0.         0.6184629  0.6070477  0.
  0.74973434 0.45182937 0.         0.7250475  0.         0.
  0.01202491 0.         0.8921455  0.449151   0.1737952  0.8706826
  0.         0.        ]]

4️⃣ nn.SequentialCell

nn.SequentialCell是一个有序的Cell容器。输入Tensor将按照定义的顺序通过所有Cell。我们可以使用SequentialCell来快速组合构造一个神经网络模型。

seq_modules = nn.SequentialCell(
    flatten,
    layer1,
    nn.ReLU(),
    nn.Dense(20, 10)
)

logits = seq_modules(input_image)
print(logits.shape)

输出:

(3, 10)

5️⃣ nn.Softmax

最后使用nn.Softmax将神经网络最后一个全连接层返回的logits的值缩放为[0, 1],表示每个类别的预测概率。axis指定的维度数值和为1。

softmax = nn.Softmax(axis=1)
pred_probab = softmax(logits)

1.4 模型参数

网络内部神经网络层具有权重参数和偏置参数(如nn.Dense),这些参数会在训练过程中不断进行优化,可通过 model.parameters_and_names() 来获取参数名及对应的参数详情。

print(f"Model structure: {model}\n\n")

for name, param in model.parameters_and_names():
    print(f"Layer: {name}\nSize: {param.shape}\nValues : {param[:2]} \n")

输出:

Model structure: Network<
  (flatten): Flatten<>
  (dense_relu_sequential): SequentialCell<
    (0): Dense<input_channels=784, output_channels=512, has_bias=True>
    (1): ReLU<>
    (2): Dense<input_channels=512, output_channels=512, has_bias=True>
    (3): ReLU<>
    (4): Dense<input_channels=512, output_channels=10, has_bias=True>
    >
  >


Layer: dense_relu_sequential.0.weight
Size: (512, 784)
Values : [[ 0.00421729  0.00764486  0.00125789 ... -0.00573038 -0.0162938
  -0.0076075 ]
 [ 0.00555476 -0.00247079  0.01020895 ...  0.0078051  -0.00817331
  -0.00015425]] 

Layer: dense_relu_sequential.0.bias
Size: (512,)
Values : [0. 0.] 

Layer: dense_relu_sequential.2.weight
Size: (512, 512)
Values : [[-0.00897185  0.01778448 -0.01740738 ... -0.0008132  -0.01179575
  -0.00346031]
 [-0.01564151  0.00206684  0.00829779 ...  0.00204611  0.00772646
  -0.01689647]] 

Layer: dense_relu_sequential.2.bias
Size: (512,)
Values : [0. 0.] 

Layer: dense_relu_sequential.4.weight
Size: (10, 512)
Values : [[ 0.00857544  0.00762396 -0.017364   ... -0.00465207  0.00717399
   0.00302128]
 [ 0.01176514 -0.0085316   0.00299114 ...  0.0016758   0.00445736
   0.00648327]] 

Layer: dense_relu_sequential.4.bias
Size: (10,)
Values : [0. 0.] 

2. 小结

今天学习了网络构建,后续可以在这基础上扩展。

在这里插入图片描述

参考:
https://blog.csdn.net/qq_39306047/article/details/139857746

  • 31
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
以下是一个简单的微信小程序制作学习计划打卡记录页面的代码示例,其中包含了前几学习时间: ``` <view class="container"> <view class="header"> <text>学习计划打卡记录</text> </view> <view class="content"> <view class="card"> <view class="card-header"> <text>今</text> <text>2021-07-01</text> </view> <view class="card-body"> <view class="card-row"> <text>学习时间:</text> <input type="number" placeholder="请输入学习时间(分钟)"/> </view> </view> </view> <view class="card"> <view class="card-header"> <text>昨</text> <text>2021-06-30</text> </view> <view class="card-body"> <view class="card-row"> <text>学习时间:</text> <input type="number" placeholder="请输入学习时间(分钟)"/> </view> <view class="card-row"> <text>已学习:</text> <text>120分钟</text> </view> </view> </view> <view class="card"> <view class="card-header"> <text>前</text> <text>2021-06-29</text> </view> <view class="card-body"> <view class="card-row"> <text>学习时间:</text> <input type="number" placeholder="请输入学习时间(分钟)"/> </view> <view class="card-row"> <text>已学习:</text> <text>90分钟</text> </view> </view> </view> </view> </view> ``` 在上面的代码中,我们使用了三个 `card` 元素来展示前几打卡记录。每个 `card` 元素都包含一个 `card-header` 元素和一个 `card-body` 元素。`card-header` 元素中包含了日期信息,而 `card-body` 元素中包含了输入框和已学习时间的显示。 在实际开发中,你需要将上面的代码替换成你自己的样式和数据。同时,你还需要编写处理用户输入和计算已学习时间的逻辑代码。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不雨_亦潇潇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值