Linear algebra2--Elimination with matrices

1.Introduction

在上一节,已经引入了矩阵A和我们要面临的第一个问题Ax=b。

2.高斯消元法

2.1计算方法

假设Ax=b是下面的形式
[ 1 2 1 3 8 1 0 4 1 ] [ x y z ] = [ 2 12 22 ] (2.1) \begin{bmatrix} 1 & 2 & 1 \\ 3 & 8 & 1 \\ 0 &4 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 12 \\ 22 \end{bmatrix} \tag{2.1} 130284111xyz=21222(2.1)
通过行之间的相减,或者互换,化成阶梯形式(echelon form),这里引入了 增 广 矩 阵 \color{red}{增广矩阵} 广
[ 1 2 1 ∣ 2 3 8 1 ∣ 12 0 4 1 ∣ 22 ] → [ 1 2 1 ∣ 2 0 2 − 2 ∣ 6 0 0 5 ∣ 10 ] (2.2) \begin{bmatrix} 1 & 2 & 1 & | & 2 \\ 3 & 8 & 1 & | & 12 \\ 0 &4 & 1 & | & 22 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 & | & 2 \\ 0 & 2 & -2 & | & 6 \\ 0 &0 & 5 & | & 10 \end{bmatrix} \tag{2.2} 130284111212221002201252610(2.2)
将化简后的增广矩阵 回 代 \color{red}{回代}

2.2思考

高斯消元法的思想比较简单,有很多工作还需要做。
1)化简的步骤能否用矩阵形式表示,这些矩阵有什么特点?
2)

3.高斯消元法中的变换矩阵

3.1row 互换

因为是行操作,采用左乘,用基向量的角度理解,(i, j)基向量发生了互换(j, i),假设i=1,j=2.
这种矩阵有个特殊的名称, 置 换 矩 阵 , 是 对 称 矩 阵 , A T A = I , A T = A − 1 \color{red}{置换矩阵,是对称矩阵,A^{T}A=I}, A^T=A^{-1} ATA=I,AT=A1
[ 0 1 0 1 0 0 0 0 1 ] \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} 010100001
形象的理解,新的row1,只要之前的第二行了;新的row2只要之前的第一行了,新的row是置换矩阵中的系数乘以A矩阵中对应的行。

3.2row消去

同样采用上面的理解方式,新的一行需要减掉那一行就减掉。例如:第二行减掉3倍的第一行
[ 1 0 0 − 3 1 0 0 0 1 ] (3.1) \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \tag{3.1} 130010001(3.1)

3.3小节

这两个矩阵很显然都是可以逆操作的,也就是所上面两个转换矩阵 A 都 可 以 逆 转 成 I A都可以逆转成I AI,两个都是 可 逆 矩 阵 \color{red}可逆矩阵

3.4可逆矩阵

高斯消元法中出现的两种特殊的矩阵都可以逆转成 I I I,同时我们知道其他的矩阵和这两种矩阵一样,也是对基向量的线性变换,那么普通的矩阵是否可逆?如何判断可逆?
参 考 3 b l u e 1 b r o w n 的 视 频 , 如 果 变 换 后 维 度 发 生 了 降 低 , 这 才 是 不 可 逆 的 \color{red}参考3blue1brown的视频,如果变换后维度发生了降低,这才是不可逆的 3blue1brown
(补充一点:信息压缩一样,如果某些维度丢失了,才是有损压缩,才是不可逆的)
在这里插入图片描述

4.解集

4.1解的数量

4.1.1几何上理解

  • A 2 x 2 举 例 A_{2x2}举例 A2x2,当转换矩阵A不会降低column space的维度,根据线性变换规则, x ⃗ 只 有 一 个 解 \vec{x}只有一个解 x
    在这里插入图片描述
    如果转换矩阵A会降低向量空间的维度,则如果output vector v ⃗ \vec{v} v 在矩阵的低维度空间中,有无数解,如果不在则没有解。
    在这里插入图片描述

4.1.2 引入column space 和 null space

  • vector space
    简单的理解:向量空间是:向量构成的集合,这里的任意一个向量在进行数乘和叠加之后仍在这个空间中。
    向量空间必须包括零向量。
  • column space
    按照矩阵是中线性变换的角度去理解,矩阵改变了原坐标系下的基向量,获得了新的坐标系,span出了新的空间,称为column space,这个space是有维度的,用rank(A)表示。
    w = x 1 ∗ a c o l 1 + x 2 ∗ a c o l 2 + . . . + x n ∗ a c o l n w=x_1*a_{col1}+x_2*a_{col2}+...+x_n*a_{coln} w=x1acol1+x2acol2+...+xnacoln
  • null space
    如图,经过变换之后整个整个平面对应的input vector x ⃗ \vec{x} x 都会被压缩成零。这些特殊的input vector span出的向量子空间是null space。
    数学形式表示: A x = 0 , 也 就 是 说 c o l u m n   s p a c e 和 n u l l   s p a c e 是 正 交 的 \color{red}Ax=0,也就是说column \, space和null \, space是正交的 Ax=0,columnspacenullspace
    null space其中一个作用是,对于求解 A x = b 的 问 题 , 只 要 求 出 一 个 特 殊 解 x , 加 上 n u l l s p a c e 就 是 实 际 结 果 。 Ax=b的问题,只要求出一个特殊解x,加上null space就是实际结果。 Ax=bxnullspace
    在这里插入图片描述

4.1.3 线性无关

线性无关几何上是,没有一个向量可以由其他向量合成,代数形式为 A x = 0 的 解 集 为 零 向 量 Ax=0的解集为零向量 Ax=0
[ v 1 v 2 . . . v n ] [ x 1 x 2 . . . x n ] = x 1 ∗ v 1 + x 2 ∗ v 2 + . . . + x n ∗ v n = 0 \begin{bmatrix} v_1 & v_2 & ... & v_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ ... \\ x_n \end{bmatrix} = x_1*v_1 + x_2*v_2 + ... + x_n*v_n =0 [v1v2...vn]x1x2...xn=x1v1+x2v2+...+xnvn=0
从维度(rank)的角度理解是:矩阵不会压缩信息,想要线性变换成0,之前就嘚是0.

4.2求解Ax=b

求解的方法,在前面也说了,主要是通过高斯消去法,然后回代。在我们回代的时候会遇到无穷个解的情况,以 A x = 0 这 种 情 况 为 例 Ax=0这种情况为例 Ax=0
[ 1 2 2 2 2 4 6 8 3 6 8 10 ] → [ 1 2 2 2 0 0 2 4 0 0 0 0 ] → [ 1 2 0 − 2 0 0 1 2 0 0 0 0 ] = R (4.1) \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 4 & 6 & 8 \\ 3 &6 & 8 & 10 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \\ 0 &0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & -2 \\ 0 & 0 & 1 & 2 \\ 0 &0 & 0 & 0 \end{bmatrix} =R \tag{4.1} 1232462682810100200220240100200010220=R(4.1)
R 是reduced rechelon form, 公式(4.1)中第1,3列是pivot column, 2,4称为free columns.
在回代的过程中,因为有4个未知量,2个方程,一般的解题思想,将free variable x2,x4当成已知量。
方程的解为
x ⃗ = [ − 2 x 2 + 2 x 4 x 2 − 2 x 4 x 4 ] \vec{x}= \begin{bmatrix} -2x_2+2x_4 \\ x_2 \\ -2x_4 \\ x_4 \end{bmatrix} x =2x2+2x4x22x4x4
这里有两个free variable,我们知道他们组成了null space,为了更简便的表示这个null space,选择基向量
x 1 ⃗ = [ − 2 1 0 0 ] x 2 ⃗ = [ 2 0 − 2 1 ] (4.2) \vec{x_1}= \begin{bmatrix}-2 \\ 1 \\ 0 \\ 0 \end{bmatrix} \vec{x_2}= \begin{bmatrix}2 \\ 0 \\ -2 \\ 1 \end{bmatrix} \tag{4.2} x1 =2100x2 =2021(4.2)
注意观察一下方程(4.1)和方程(4.2),结果有很大的相似性,原因是:
在进行操作之前先将矩阵A,第2列和第3列进行互换(右乘操作),经过高斯消去法,得到
R = [ I F 0 0 ] R= \begin{bmatrix} I & F \\ 0 & 0 \end{bmatrix} R=[I0F0]
null space 的结果则为
N ( A ) = [ − F I ] N(A) = \begin{bmatrix} -F \\ I \end{bmatrix} N(A)=[FI]
因为 R ∗ N = 0 ⃗ R*N=\vec{0} RN=0

4.3 求解 A − 1 A^{-1} A1

4.3.1高斯若尔当方法

在求解之前搞清楚是否可逆,本质上就是搞清楚,转换矩阵column space的维度,也就是rank(A),
可以采用行列式(determination,只知道有没有发生降维,并不知道降成了几维)去做,或者还是用高斯消去法。
注 意 : 求 逆 解 只 在 方 阵 中 \color{red}注意:求逆解只在方阵中
采用的高斯若尔当方法:
思路:
A − 1 A → A − 1 I A^{-1}A \rightarrow A^{-1}I A1AA1I
如果能将左边转换成单位阵,那么右边就是逆解。

5.高斯消去法和LU分解

5.1消去操作对应矩阵的逆

以方程(3.1)为例,该矩阵的逆为:
[ 1 0 0 3 1 0 0 0 1 ] (3.1) \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \tag{3.1} 130010001(3.1)
特 点 是 消 去 矩 阵 和 它 的 逆 矩 阵 都 是 下三角矩阵 : 即 为 L 形 矩 阵 \color{red}特点是消去矩阵和它的逆矩阵都是\textbf{下三角矩阵}:即为L形矩阵 下三角矩阵:L
E A = U EA=U EA=U, A = E − 1 U A=E^{-1}U A=E1U,即 A = L U A=LU A=LU

Reference

[1] https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw
[2] https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/index.htm

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值