概率论基础2----随机变量r.v.

1.Introduction

在概率论基础1里, 复习了如何计算某个事件的概率。以及如果不知直接获取在整个样本空间中,事件x的全部样本数,可以先统计在子样本集中的概率,再使用全概率公式,得到事件x在整个样本空间中的概率。
在这里插入图片描述
在本部分侧重于发掘样本空间中样本的分布规律,以及随机变量的关系。

2.均匀分布

2.1 离散均匀分布

统计学生生日月份,假设某一个班级的统计结果刚好如下图。每个学生是一个样本,用方格表示,放置在对应的月份(变量)轴上。
在这里插入图片描述
用概率形式描述为:
在这里插入图片描述

2.2 连续概率分布

统计随机数生成器(0-10)的分布,统计1000次,做数据统计时,数据的分辨率设置为0.1,最终的分布接近下面的图形。
在这里插入图片描述
用离散概率P形式表示为:
在这里插入图片描述
但是每个区间的概率是受数据分辨率(这里是0.1)影响,如果分辨率是1,则区间对应的概率是0.1,如下图。
在这里插入图片描述
为了消除区间大小(数据分辨率)的影响,引入概率密度。
f X = d P d x = Δ P Δ x (2.1) f_X=\frac{dP}{dx}=\frac{\Delta P}{\Delta x} \tag{2.1} fX=dxdP=ΔxΔP(2.1)
如果 f X f_X fX可以用函数描述,则称这个函数为probabilities distribution function(PDF),用PDF表示随机数分布的规律,如下图。
在这里插入图片描述

3.期望和方差

3.1 期望

实际生活中,均匀分布的情况非常少,需要统计出分布的质心。
如统计某个高中学生,共1000人身高的分布,统计结果如下。将分布的质心往往作为期望,作为一种规律用于后续的预测的推理。

3.1.1 离散分布的期望

以1cm的分辨率绘制下图,
E ( X ) = ∑ 150 190 x ∗ N ( x ) 1000 = ∑ 150 190 x P X ( x ) (3.1) E(X)=\sum_{150}^{190} \frac{x*N(x)}{1000}=\sum_{150}^{190}xP_X(x) \tag{3.1} E(X)=1501901000xN(x)=150190xPX(x)(3.1)
在这里插入图片描述

3.1.2 连续分布的期望

根据公式(2.1),我们知道概率和概率分布的关系有
P X ( x ) = f X ( x ) ∗ d x (3.2) P_X(x)=f_X(x)*dx \tag{3.2} PX(x)=fX(x)dx(3.2)
代入到公式(3.1)中,有
E [ X ] = ∑ 150 190 x ∗ f X ( x ) d x (3.3) E[X]=\sum_{150}^{190}x*f_X(x)dx \tag{3.3} E[X]=150190xfX(x)dx(3.3)
当dx无穷小的时候,该公式可以转换成:
E [ X ] = ∫ 150 190 x ∗ f X ( x ) d x (3.4) E[X]=\int_{150}^{190}x*f_X(x)dx \tag{3.4} E[X]=150190xfX(x)dx(3.4)

3.2 方差

物理中除了用质心位置描述分布外,往往还采用转动惯量描述质量分布和形状的影响。
类似于转动惯量,方差的定义为:
V a r ( X ) = E [ ( x − E [ X ] ) 2 ] = E [ x 2 ] − ( E [ x ] ) 2 (3.5) Var(X)=E[(x-E[X])^2]=E[x^2]-(E[x])^2 \tag{3.5} Var(X)=E[(xE[X])2]=E[x2](E[x])2(3.5)
利用公式(3.4),还可以用积分的方式,计算方差(转动惯量)。
V a r ( X ) = ∫ ( x − E ( x ) ) 2 f X ( x ) d x (3.6) Var(X)=\int(x-E(x))^2 f_X(x)dx \tag{3.6} Var(X)=(xE(x))2fX(x)dx(3.6)

4.两个变量X,Y

4.1 两个变量的概率分布

游戏中自动生成人物,使用随机数生成器生人物的身高X和体重Y,身高的测量精度为1cm,体重的测量精度为1kg,统计4800个人物,可以绘制统计数据如下。
在这里插入图片描述
与单变量的概率图类似,如下图:
在这里插入图片描述
每个点的概率与区间的大小相关(身高的数据精度和体重的精度),避免区间大小的影响,用概率密度进行描述。
f X , Y ( x , y ) = P ( X = x , Y = y ) Δ x Δ y (4.1) f_{X,Y}(x,y)=\frac{P(X=x,Y=y)}{\Delta x \Delta y} \tag{4.1} fX,Y(x,y)=ΔxΔyP(X=x,Y=y)(4.1)

4.1.1两个变量下的期望

按照求一个二维物体的质心位置的方法去求期望,在每个维度上有一个质心坐标值。
E [ X ] = ∫ x f X ( x ) d x E [ Y ] = ∫ y f Y ( x ) d y (4.2) \begin{aligned} E[X] &=\int xf_X(x)dx & \\ E[Y] &=\int yf_Y(x)dy & \end{aligned} \tag{4.2} E[X]E[Y]=xfX(x)dx=yfY(x)dy(4.2)

4.1.2 两个变量下的方差

此时方差类似于求这个二维物体的转动惯量。

  • 方法1,利用定义就是方差(转动惯量)
    V a r ( X , Y ) = ∫ ∫ f X , Y ( ( x − E [ x ] ) 2 + ( y − E [ Y ] ) 2 ) d x d y (4.3) Var(X,Y) = \int \int f_{X,Y}((x-E[x])^2+(y-E[Y])^2)dxdy \tag{4.3} Var(X,Y)=fX,Y((xE[x])2+(yE[Y])2)dxdy(4.3)
  • 方法2,利用转动惯量的平行轴定理[1], 如在X轴将二维平面分解成均匀的区间,每个区间的转动的惯量为 J x J_{x} Jx,然后再计算 M L 2 ML^2 ML2
    V a r ( X , Y ) = ∫ f Y ∣ X = x ( y ∣ X = x ) V a r ( Y ∣ X = x ) d x + ∫ f X ( x ) ( ( E ( Y ∣ X = x ) − E [ Y ] ) 2 + ( x − E [ x ] ) 2 ) d x (4.4) \begin{aligned} Var(X,Y) & =\int f_{Y|X=x}(y|X=x)Var(Y|X=x)dx \\ & + \int f_{X}(x)((E(Y|X=x)-E[Y])^2+(x-E[x])^2)dx \end{aligned} \tag{4.4} Var(X,Y)=fYX=x(yX=x)Var(YX=x)dx+fX(x)((E(YX=x)E[Y])2+(xE[x])2)dx(4.4)
    在这里插入图片描述

4.2 条件概率下的概率分布

拿到统计数据后,我们对Y=55kg,游戏人物的身高的非常感兴趣。
在这里插入图片描述
新的样本空间中有80个样本,此时的概率为:
P ( X = x ∣ Y = y ) = P ( X = x , Y = y ) P ( Y = y ) = 1 / 2400 1 / 60 = 1 / 40 (4.5) P(X=x|Y=y)=\frac{P(X=x,Y=y)}{P(Y=y)}=\frac{1/2400}{1/60}=1/40 \tag{4.5} P(X=xY=y)=P(Y=y)P(X=x,Y=y)=1/601/2400=1/40(4.5)
根据全概率公式,可以先获得Y条件下的X的概率,再进行汇总,如上图
P ( X = x ) = ∑ i n P ( X = x , Y = y i ) = ∑ i n P ( Y = y ) P ( X = x ∣ Y = y ) (4.6) P(X=x)=\sum_i^n P(X=x,Y=y_i)=\sum_i^n P(Y=y)P(X=x|Y=y) \tag{4.6} P(X=x)=inP(X=x,Y=yi)=inP(Y=y)P(X=xY=y)(4.6)
用几何理解,每个特殊的y值分布有一个x的概率,再乘以这个特殊的y值在总体样本的占比,就是这个子样本空间中对应的x在总样本空间的占比。
在这里插入图片描述
获得新样本空间中的概率后,继续可以计算新的概率分布的概率密度。
f X ∣ Y = y ( x ∣ Y = y ) = P ( X = x ∣ Y = y ) Δ x = P ( X = x , Y = y ) Δ x Δ y ∗ Δ y P ( Y = y ) = f X , Y ( x , y ) f Y ( y ) (4.7) \begin{aligned} f_{X|Y=y}(x|Y=y) & = \frac{P(X=x|Y=y)}{\Delta x} & \\ & = \frac{P(X=x,Y=y)}{\Delta x \Delta y} * \frac{\Delta y}{P(Y=y)} & \\ & = \frac{f_{X,Y}(x,y)}{f_Y(y)} & \end{aligned} \tag{4.7} fXY=y(xY=y)=ΔxP(X=xY=y)=ΔxΔyP(X=x,Y=y)P(Y=y)Δy=fY(y)fX,Y(x,y)(4.7)
对于这个公式,可以从离散采样的角度理解,公式对应的贝叶斯条件概率
f X ∣ Y = y ( x ∣ Y = y ) Δ x = f X , Y ( x , y ) Δ x Δ y f Y ( y ) Δ y (4.8) \begin{aligned} f_{X|Y=y}(x|Y=y) \Delta x & = \frac{f_{X,Y}(x,y)\Delta x \Delta y}{f_Y(y)\Delta y} & \end{aligned} \tag{4.8} fXY=y(xY=y)Δx=fY(y)ΔyfX,Y(x,y)ΔxΔy(4.8)

4.2.1 条件概率下的期望

例如我们关心当人物体重为Y=50kg时,游戏人物的身高的分布。
E [ X ∣ Y = 50 ] = ∑ 150 190 x P X ∣ Y = 50 ( x ) = ∑ 150 190 x f X ∣ Y = 50 ( x ) Δ x = ∫ 150 190 x f X ∣ Y = 50 ( x ) d x = ∫ 150 190 x f X , Y ( x , y ) f Y ( 50 ) d x (4.9) \begin{aligned} E[X|Y=50] &=\sum_{150}^{190} xP_{X|Y=50}(x) & \\ & = \sum_{150}^{190} xf_{X|Y=50}(x)\Delta x \\ & = \int_{150}^{190} xf_{X|Y=50}(x)dx \\ & = \int_{150}^{190} x\frac{f_{X,Y}(x,y)}{f_Y(50)}dx \end{aligned} \tag{4.9} E[XY=50]=150190xPXY=50(x)=150190xfXY=50(x)Δx=150190xfXY=50(x)dx=150190xfY(50)fX,Y(x,y)dx(4.9)
有时候需要根据条件期望,再根据全概率分布,去计算整个样本空间的期望
E [ X ] = ∑ 40 100 E [ X ∣ Y = y ] P Y ( y ) = E [ E [ X ∣ Y ] ] (4.10) \begin{aligned} E[X] &=\sum_{40}^{100} E[X|Y=y]P_Y(y) \\ & = E[E[X|Y]] \end{aligned} \tag{4.10} E[X]=40100E[XY=y]PY(y)=E[E[XY]](4.10)

4.2.2 条件概率下的方差

例如我们关心当人物体重为Y=50kg,游戏人物的身高的分布。
V a r ( X ∣ Y = 50 ) = ∑ 150 190 ( x − E [ X ∣ Y = 50 ] ) 2 P X ∣ Y = 50 ( x ∣ 50 ) = ∑ 150 190 ( x − E [ X ∣ Y = 50 ] ) 2 f X ∣ Y = 50 ( x ∣ 50 ) Δ x = ∫ 150 190 ( x − E [ X ∣ Y = 50 ] ) 2 f X ∣ Y = 50 ( x ∣ 50 ) d x (4.11) \begin{aligned} Var(X|Y=50) & =\sum_{150}^{190}(x-E[X|Y=50])^2P_{X|Y=50}(x|50) \\ & = \sum_{150}^{190}(x-E[X|Y=50])^2f_{X|Y=50}(x|50)\Delta x \\ & = \int_{150}^{190}(x-E[X|Y=50])^2f_{X|Y=50}(x|50) dx \end{aligned} \tag{4.11} Var(XY=50)=150190(xE[XY=50])2PXY=50(x50)=150190(xE[XY=50])2fXY=50(x50)Δx=150190(xE[XY=50])2fXY=50(x50)dx(4.11)
同样的,有时候只能先获得条件概率下的方差,再利用转动惯量的平行轴定理。
V a r ( X ) = ∑ 40 100 ( V a r ( X ∣ Y = y ) f Y ( y ) d y + ( E [ X ∣ Y = x ] − E [ X ] ) 2 P Y ( y ) ) = E [ V a r ( X ∣ Y ) ] + V a r [ E [ X ∣ Y ] ] (4.12) \begin{aligned} Var(X) & = \sum_{40}^{100}(Var(X|Y=y)f_Y(y)dy+(E[X|Y=x]-E[X])^2P_Y(y)) \\ & = E[Var(X|Y)]+Var[E[X|Y]] \end{aligned} \tag{4.12} Var(X)=40100(Var(XY=y)fY(y)dy+(E[XY=x]E[X])2PY(y))=E[Var(XY)]+Var[E[XY]](4.12)
在这里插入图片描述

4.3 独立事件

如果恰好在不同的y值下,X的分布都是一样的,我们的例子显示是一样,则说明X,Y是独立事件,满足
P ( X = x ∣ Y = y ) = P ( X = x ) P ( X = x , Y = y ) = P ( X = x ) P ( Y = y ) \begin{aligned} P(X=x|Y=y) & =P(X=x) & \\ P(X=x,Y=y) & = P(X=x) P(Y=y) \end{aligned} P(X=xY=y)P(X=x,Y=y)=P(X=x)=P(X=x)P(Y=y)
在我们这个例子中,
f X , Y ( x , y ) = P ( X = x , Y = y ) Δ x Δ y = P ( X = x ) Δ x P ( Y = y ) Δ y = f X ( x ) f Y ( y ) \begin{aligned} f_{X,Y}(x,y) &=\frac{P(X=x,Y=y)}{\Delta x \Delta y} & \\ & =\frac{P(X=x)}{\Delta x}\frac{P(Y=y)}{\Delta y} & \\ & =f_X(x)f_Y(y) \end{aligned} fX,Y(x,y)=ΔxΔyP(X=x,Y=y)=ΔxP(X=x)ΔyP(Y=y)=fX(x)fY(y)

4.3.1 独立事件的期望

目前已经得到了独立事件的概率和概率密度的关系,接下来非常感兴趣的是分布上是否有特殊的规律。
在推导的时候,从统计入手,身高和体重按照1cm( Δ x \Delta x Δx)和1kg( Δ y \Delta y Δy)的数据精度进行统计,最后
E [ X Y ] = ∑ s a m p l e 1 s a m p l e N x y N − 1 = ∑ 150 190 ∑ 40 100 x y P X , Y ( x , y ) = ∑ 150 190 ∑ 40 100 x y P X ( x ) P Y ( y ) = ∫ ∫ x y f X , Y ( x , y ) d x d y = ∫ ∫ x y f X ( x ) f Y ( y ) d x d y = E [ X ] E [ Y ] \begin{aligned} E[XY] &=\frac {\sum_{sample1}^{sampleN} xy} {N-1} & \\ & = \sum_{150}^{190}\sum_{40}^{100}xyP_{X,Y}(x,y) = & \sum_{150}^{190}\sum_{40}^{100}xyP_{X}(x)P_Y(y) \\ & = \int \int xyf_{X,Y}(x,y)dxdy = & \int \int xyf_{X}(x)f_{Y}(y)dxdy \\ & = E[X]E[Y] \end{aligned} E[XY]=N1sample1sampleNxy=15019040100xyPX,Y(x,y)==xyfX,Y(x,y)dxdy==E[X]E[Y]15019040100xyPX(x)PY(y)xyfX(x)fY(y)dxdy

4.3.2 独立事件的方差

两个没有什么关系的分布放在一起,可以从信号的角度理解,两个独立信号,线性叠加,互不干扰。
V a r ( X + Y ) = V a r ( X ) + V a r ( Y ) Var(X+Y)=Var(X)+Var(Y) Var(X+Y)=Var(X)+Var(Y)

4.4 X,Y变量之间的关系

4.4.1 协方差

这 个 部 分 引 用 知 乎 马 同 学 的 回 答 [ 2 ] , 详 细 的 介 绍 可 以 看 马 同 学 的 回 答 。 \color{red}{这个部分引用知乎马同学的回答[2],详细的介绍可以看马同学的回答。} [2]
在随机生成游戏人物体重和身高这个实验中,我们已经获取了全部4800个样本的数据,接下来可以在二维坐标系上,将所有数据点绘制出来。
在我们这个实验中,因为身高和体重都是随机生成的,并没有任何的线性规律可言,所以X,Y的关系如下图。
在这里插入图片描述
但是根据我们的生活经验:身高越高,体重一般越大,实际身高和体重存在一定的线性关系。
在这里插入图片描述
在统计,采用红色的方格的面积表示正相关,绿色的方格的面积表示负相关,如果所有样本对应的方格面积之和为0,则不存在线性关系。

  • 统计离散点的协方差
    C o v ( X , Y ) = ∑ s a m p l e 1 s a m p l e N ( x − E ( X ) ) ( y − E ( Y ) ) N \begin{aligned} Cov(X,Y) &= \frac {\sum_{sample1}^{sampleN}(x-E(X))(y-E(Y))} {N} \end{aligned} Cov(X,Y)=Nsample1sampleN(xE(X))(yE(Y))
  • 如果是连续变量,身高的数据精度为 Δ x \Delta x Δx,体重的数据精度为 Δ y \Delta y Δy,协方差为
    C o v ( X , Y ) = ∑ 150 190 ∑ 40 100 ( x − E ( X ) ) ( y − E ( Y ) ) P X , Y ( x , y ) \begin{aligned} Cov(X,Y) &=\sum_{150}^{190}\sum_{40}^{100}(x-E(X))(y-E(Y))P_{X,Y}(x,y) \\ \end{aligned} Cov(X,Y)=15019040100(xE(X))(yE(Y))PX,Y(x,y)
  • 换成概率密度表达为
    C o v ( X , Y ) = ∫ 150 190 ∫ 40 100 ( x − E ( X ) ) ( y − E ( Y ) ) f X , Y ( x , y ) d x d y = E [ ( X − E [ X ] ) ( Y − E [ Y ] ) ] = E [ ( X Y − E [ X ] Y − E [ Y ] x + E [ X ] E [ Y ] ) ] = E [ X Y ] − E [ X ] E [ Y ] \begin{aligned} Cov(X,Y) &=\int_{150}^{190}\int_{40}^{100}(x-E(X))(y-E(Y))f_{X,Y}(x,y)dxdy \\ & = E[(X-E[X])(Y-E[Y])] \\ & = E[(XY-E[X]Y-E[Y]x+E[X]E[Y])] \\ & = E[XY]-E[X]E[Y] \end{aligned} Cov(X,Y)=15019040100(xE(X))(yE(Y))fX,Y(x,y)dxdy=E[(XE[X])(YE[Y])]=E[(XYE[X]YE[Y]x+E[X]E[Y])]=E[XY]E[X]E[Y]

4.4.2相关系数

在我们这个实验中,协方差Cov的单位是 厘 米 ∗ K G \color{red}{厘米*KG} KG,数学上引入无量纲技术,用相关系数表示。
ρ = C o v ( 厘 米 ∗ K G ) σ x ( 厘 米 ) σ y ( k g ) \rho=\frac{Cov(厘米*KG)}{\sigma_x(厘米)\sigma_y(kg)} ρ=σx()σy(kg)Cov(KG)
容易得到 ρ \rho ρ的范围是[-1,1],相关系数和变量之间关系,可以用下图[3]表示
在这里插入图片描述

4.5 组合概率

4.5.1 z=g(x)

某人玩roulette游戏,统计他赢钱的数目X(输钱X为负数),不管他赢钱或者是输钱都在创造GDP,即
Z = ∣ X ∣ Z=|X| Z=X

  • z的概率P_Z(z)
    P Z ( z ) = P X ( − z ) + P X ( z ) P_Z(z)=P_X(-z)+P_X(z) PZ(z)=PX(z)+PX(z)
  • z的概率密度f_Z(z)
    f Z ( z ) Δ z = f X ( − z ) Δ x + f X ( z ) Δ x f Z ( z ) = f X ( − z ) + f X ( z ) \begin{aligned} f_Z(z)\Delta z & =f_X(-z)\Delta x+f_X(z)\Delta x \\ f_Z(z) & = f_X(-z)+f_X(z) \end{aligned} fZ(z)ΔzfZ(z)=fX(z)Δx+fX(z)Δx=fX(z)+fX(z)
    对于更加通用的关系Z=g(x)
    f Z ( z ) Δ z = f X ( g − 1 ( z ) ) Δ x f Z ( z ) = f X ( g − 1 ( z ) ) g ′ ( g − 1 ( z ) ) \begin{aligned} f_Z(z)\Delta z & =f_X(g^{-1}(z))\Delta x \\ f_Z(z) & = \frac{f_X(g^{-1}(z))}{g'(g^{-1}(z))} \end{aligned} fZ(z)ΔzfZ(z)=fX(g1(z))Δx=g(g1(z))fX(g1(z))
  • z的期望
    E [ Z ] = ∑ z P z ( z ) = ∑ x : g ( x ) = z z P z ( x ) \begin{aligned} E[Z] &=\sum zPz(z) \\ & = \sum_{x:g(x)=z}zPz(x) \end{aligned} E[Z]=zPz(z)=x:g(x)=zzPz(x)
    如果z=ax+b,那么E[Z]和E[X]的关系为:
    E [ Z ] = ∑ x : g ( x ) = z ( a x + b ) P z ( x ) = a E [ x ] + b \begin{aligned} E[Z] &= \sum_{x:g(x)=z}(ax+b)Pz(x) \\ & = aE[x]+b \end{aligned} E[Z]=x:g(x)=z(ax+b)Pz(x)=aE[x]+b
  • z的方差
    V a r ( Z ) = ∑ x : g ( x ) = z ( z − E [ Z ] ) 2 P X ( x ) \begin{aligned} Var(Z) &=\sum_{x:g(x)=z}(z-E[Z])^2P_X(x) \end{aligned} Var(Z)=x:g(x)=z(zE[Z])2PX(x)
    如果z=ax+b,那么Var[Z]和Var[X]的关系为:
    V a r ( Z ) = ∑ x : g ( x ) = z ( a x + b − a E [ x ] − b ) 2 P X ( x ) = a 2 V a r ( x ) \begin{aligned} Var(Z) &=\sum_{x:g(x)=z}(ax+b-aE[x]-b)^2P_{X}(x) \\ & = a^2Var(x) \end{aligned} Var(Z)=x:g(x)=z(ax+baE[x]b)2PX(x)=a2Var(x)

4.5.2 Z=X+Y

一个典型的问题是两次掷色子,第一次的结果是X,第二次的结果是Y,两次结果之和是Z。假设两个事件有先后顺序,且X在前。

  • z的概率 P Z ( z ) P_Z(z) PZ(z)
    P ( Z ) = ∑ 1 ≤ x ≤ Z − 1 P X ( x ) P Y ∣ X = x ( z − x ∣ X = x ) \begin{aligned} P(Z) & =\sum_{1\le x\le Z-1}P_X(x)P_{Y|X=x}(z-x|X=x) \\ \end{aligned} P(Z)=1xZ1PX(x)PYX=x(zxX=x)
  • z的概率密度 f Z ( z ) f_Z(z) fZ(z)
    如果随机生成游戏中男、女主角两个人物的身高(X,Y),总身高之和为Z(实际中我们可能更关心两个人物的平均身高),此时变量均为连续变量。假设我们统计人物身高时的数据精度为 Δ x , Δ y \Delta x, \Delta y Δx,Δy,研究连续变量的概率密度的关系。
    f ( Z ) Δ z = ∑ 150 ≤ x ≤ 190 f X ( x ) Δ x f Y ∣ X = x ( z − x ∣ X = x ) Δ y \begin{aligned} f(Z) \Delta z& =\sum_{150\le x\le 190}f_X(x)\Delta xf_{Y|X=x}(z-x|X=x)\Delta y \\ \end{aligned} f(Z)Δz=150x190fX(x)ΔxfYX=x(zxX=x)Δy
    根据组合方程Z=X+Y,得到微分结果
    d z d y = 1 + d x d y \frac{dz}{dy}=1+\frac{dx}{dy} dydz=1+dydx
    概率分布的关系有:
    f ( Z ) = ∑ 150 ≤ x ≤ 190 f X ( x ) Δ x f Y ∣ X = x ( z − x ∣ X = x ) ( 1 1 + d x / d y ) = ∫ 150 190 f X ( x ) f Y ∣ X = x ( z − x ∣ X = x ) ( 1 1 + d x / d y ) d x \begin{aligned} f(Z) & =\sum_{150\le x\le 190}f_X(x)\Delta xf_{Y|X=x}(z-x|X=x)(\frac{1}{1+dx/dy}) \\ & = \int_{150}^{190}f_X(x)f_{Y|X=x}(z-x|X=x)(\frac{1}{1+dx/dy})dx \end{aligned} f(Z)=150x190fX(x)ΔxfYX=x(zxX=x)(1+dx/dy1)=150190fX(x)fYX=x(zxX=x)(1+dx/dy1)dx
    在这里插入图片描述

References

[1] https://baike.baidu.com/item/%E8%BD%AC%E5%8A%A8%E6%83%AF%E9%87%8F/1994034?fr=aladdin
[2] https://zhuanlan.zhihu.com/p/70644127
[3] https://en.wikipedia.org/wiki/Correlation_and_dependence

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值