聚类练习:对地理数据应用二分k-均值算法聚类

编程作业:聚类

实验原理:

参考:

机器学习实战 (豆瓣) (douban.com)

(13条消息) 机器学习实战 第十章 利用K-均值聚类算法对未标注数据分组_无名的博客-CSDN博客

k-means聚类:

k-means聚类将相似的对象归到同一个簇中,每个簇的中心采用簇中所含值的均值计算而成。

优点:容易实现

缺点:可能收敛到局部最小值,在大规模数据上收敛较慢

适用数据类型:数值型数据

算法流程:

    创建k个点作为起始质心(随机选择)
    当任意一个点的簇分配结果发生改变时:
        对数据集中的每个数据点:
         对每个质心:
           计算数据点到质心的距离
       将数据点分配到距其最近的簇
        对每一个簇重新计算其均值作为质心

二分k-means聚类:

k-means的缺点是可能收敛于局部最优解,使用二分k-means聚类算法来解决这个问题。

可以使用SSE(sum of squared error误差平方和)来度量聚类的效果,SSE值越小表示数据点接近于它的质心,聚类效果越好。因为对误差取了平方,因此更加重视那些远离质心的点。

二分k-means聚类算法的思想是先将所有数据点当作一个簇,然后将该簇一分为二。之后在现有的簇中选择一个簇进行划分,选择哪个簇取决于划分哪个簇后能使SSE值最小。不断重复上述过程,直到达到用户要求的簇的个数。

伪代码:

        将所有数据点都看成一个簇
        当簇的数目小于k时:
            初始化lowestSSE = inf
            对于每一个簇:
                对该簇进行k-means聚类(k=2)
                计算聚类后的总误差
                如果小于lowestSSE,则保存聚类后的参数,更新lowestSEE
            选择划分后使得误差值最小的那个簇进行划分

任务:对地理数据应用二分k-均值算法聚类

(1)问题描述:

你的朋友Drew希望你带他去城里庆祝他的生日。由于其他一些朋友也会过来,所以需要你提供一个大家都可行的计划。Drew给了你希望去的69个地址和相应的经纬度。你要决定将这些地方进行聚类的最佳策略,这样可以安排交通工具抵达这些簇的质心,然后步行到每个簇内地址。

(2)具体实现:

  1. 读入数据:

    datList = []
    #导入数据
    for line in open('places.txt').readlines():
        lineArr = line.split('\t')
        datList.append([float(lineArr[4]), float(lineArr[3])])
    datMat = mat(datList)
    
  2. 计算两个向量之间的距离:

    def distEclud(vecA, vecB):
        return sqrt(sum(power(vecA - vecB, 2)))
    
  3. 随机初始化聚簇中心:

    #随机生成簇中心函数
    def randCent(dataSet, k):
        n = shape(dataSet)[1]
        centroids = mat(zeros((k,n)))
        for j in range(n):
            minJ = min(dataSet[:,j]) 
            rangeJ = float(max(dataSet[:,j]) - minJ)
            centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1))
        return centroids
    
  4. 球面距离计算:

    #根据经纬度计算球面距离,vecA[0,:]表示A点经纬度
    def distSLC(vecA, vecB):
        a = sin(vecA[0,1]*pi/180) * sin(vecB[0,1]*pi/180)
        b = cos(vecA[0,1]*pi/180) * cos(vecB[0,1]*pi/180) * \
                          cos(pi * (vecB[0,0]-vecA[0,0]) /180)
        return arccos(a + b)*6371.0 
    
  5. k-means聚类:

    K-均值是发现给定数据集的k个簇的算法。簇个数k时用户给定的,每个簇通过其质心(centroid),即簇中所有点的中心来描述。

    #Kmeans
    def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
        m = shape(dataSet)[0]  #样本数
        clusterAssment = mat(zeros((m,2))) #获得m*2矩阵(一列簇分类结果,一列误差)
        centroids = createCent(dataSet,k)  #初始化K个质心
        clusterChanged = True #簇更改标记
        while clusterChanged:
            clusterChanged = False
            #样本点加入到最近的簇
            for i in range(m):
                minDist = inf;
                minIndex = -1
                for j in range(k):
                    distJI = distMeas(centroids[j, :], dataSet[i, :])
                    if distJI < minDist:
                        minDist = distJI; minIndex = j
                #该样本划分到距离最近的簇
                if clusterAssment[i,0] != minIndex: clusterChanged = True
                clusterAssment[i,:] = minIndex,minDist**2
                #每轮结束后调整簇心
                for cent in range(k):
                    if clusterAssment[i, 0] != minIndex: clusterChanged = True
                    clusterAssment[i, :] = minIndex, minDist ** 2 #计算每列平均值
            return centroids, clusterAssment
    
  6. 二分k-means聚类:

    二分K-均值算法(bisecting K-means),它为了克服k-均值算法收敛于局部最小值的问题。该算法首先将所有点作为一个簇,然后将该簇一分为二。之后选择一个簇继续划分,选择哪个簇进行划分取决于对其划分是否可以最大程度降低SSE的值。上述基于SSE的划分过程不断重复,直到得到指定的簇数目为止。

    代码如下:

    # k:簇个数   distMeas:距离生成器
    def biKmeans(dataSet, k, distMeas=distEclud):
        m = shape(dataSet)[0]  #数据集矩阵的行数
        clusterAssment = mat(zeros((m,2)))
        centroid0 = mean(dataSet, axis=0).tolist()[0]   # 创建一个初始簇
        centList =[centroid0] #create a list with one centroid
        for j in range(m):  # 计算每个样本点到初始簇的距离
            clusterAssment[j,1] = distMeas(mat(centroid0), dataSet[j,:])**2
        while (len(centList) < k):  # 迭代直到簇的数目等于k
            lowestSSE = inf
            for i in range(len(centList)):
                # 尝试划分每一簇
                ptsInCurrCluster = dataSet[nonzero(clusterAssment[:,0].A==i)[0],:]
                centroidMat, splitClustAss = kMeans(ptsInCurrCluster, 2, distMeas)
                sseSplit = sum(splitClustAss[:,1])
                # 剩余数据集的误差
                sseNotSplit = sum(clusterAssment[nonzero(clusterAssment[:,0].A!=i)[0],1])
                # 记录总误差最小的那个簇
                if (sseSplit + sseNotSplit) < lowestSSE:
                    bestCentToSplit = i
                    bestNewCents = centroidMat
                    bestClustAss = splitClustAss.copy()
                    lowestSSE = sseSplit + sseNotSplit
            # 因为二分均值,所以结果簇编号只能是0或1,修改结果簇编号为:原簇号和新增簇号
            bestClustAss[nonzero(bestClustAss[:,0].A == 1)[0],0] = len(centList)
            bestClustAss[nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCentToSplit
            # 更新簇列表centlist和样本点分配簇结果矩阵clusterAssment
            centList[bestCentToSplit] = bestNewCents[0,:].tolist()[0]
            centList.append(bestNewCents[1,:].tolist()[0])
            clusterAssment[nonzero(clusterAssment[:,0].A == bestCentToSplit)[0],:]= bestClustAss
        return mat(centList), clusterAssment;
    
    

(3)实验结果:

  1. k-means聚类:

    from matplotlib import pyplot as plt
    import Kmeansch10 as km
    
    data_X = km.loadDataSet("places.txt")
    centroids, clusterAssment = km.kMeans(data_X, 4)
    
    plt.figure()
    plt.scatter(data_X[:, 0].flatten().tolist(), data_X[:, 1].flatten().tolist(), c="b", marker="o")
    plt.scatter(centroids[:, 0].flatten().tolist(), centroids[:, 1].flatten().tolist(), c='r', marker="+")
    plt.show()
    

    发现,在经过多次测试后,会出现聚簇收敛到局部最小值,如下所示:

    image-20210513170800404

  2. 二分k-means聚类:

    k-means的缺点是可能收敛于局部最优解,使用二分k-means聚类算法来解决这个问题。

    def clusterClubs(numClust=5):
        datList = []
        #导入数据
        for line in open('places.txt').readlines():
            lineArr = line.split('\t')
            datList.append([float(lineArr[4]), float(lineArr[3])])
        datMat = mat(datList)
        #采用二分k-均值算法进行聚类
        myCentroids, clustAssing = biKmeans(datMat, numClust, distMeas=distSLC)
        #定义画布,背景
        fig = plt.figure()
        rect=[0.0,0.0,1.0,1.0]
        #不同图形标识
        scatterMarkers=['s', 'o', '^', '8', 'p', \
                        'd', 'v', 'h', '>', '<']
        axprops = dict(xticks=[], yticks=[])
        ax0=fig.add_axes(rect, label='ax0', **axprops)
        #导入地图
        imgP = plt.imread('Portland.png')
        ax0.imshow(imgP)
        ax1=fig.add_axes(rect, label='ax1', frameon=False)
        #采用不同图形标识不同簇
        for i in range(numClust):
            ptsInCurrCluster = datMat[nonzero(clustAssing[:,0].A==i)[0],:]
            markerStyle = scatterMarkers[i % len(scatterMarkers)]
            ax1.scatter(ptsInCurrCluster[:,0].flatten().A[0], ptsInCurrCluster[:,1].flatten().A[0], marker=markerStyle, s=90)
        #采用‘+’表示簇中心
        ax1.scatter(myCentroids[:,0].flatten().A[0], myCentroids[:,1].flatten().A[0], marker='+', s=300)
        plt.show()
    

    结果如下:

    • K=2时:

      image-20210514144309979

      image-20210513173814528
    • K=3时:

      image-20210514144450362

      image-20210513173914222
    • K=4时:

      image-20210514144525014

      image-20210513174112256
    • K=5时:

      image-20210514144610518

      image-20210513174201986

实验小结:

聚类算法时一种无监督的学习方法。所谓无监督学习是指实现不知道要寻找的内容,即没有目标变量。聚类将数据点归到多个簇中,其中相似的数据点处于同一簇,而不相似的数据点处于不同簇中。

同时,学习到关于聚类中K选取方法的经验:

  • 分析数据,人工判断;
  • 基于变化的算法:即定义一个函数,随着K的改变,认为在正确的K时会产生极值;
  • 基于变化的算法:即定义一个函数,随着K的改变,认为在正确的K时会产生极值;
  • 基于结构的算法:即比较类内距离、类间距离以确定K;
  • 基于一致性矩阵的算法:即认为在正确的K时,不同次聚类的结果会更加相似;
  • 基于层次聚类:即基于合并或分裂的思想,在一定情况下停止从而获得K;
  • 基于采样的算法:即对样本采样,分别做聚类;根据这些结果的相似性确定K;
  • 使用Canopy Method算法进行初始划分;
  • 使用BIC算法进行初始划分。
  • 2
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Yuetianw

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值