CLIP图像特征提取器的各模型对应的维度

   # "openai/clip-vit-base-patch32":   [1, 512]
   # "http://bj.bcebos.com/paddlenlp/models/community/openai/clip-vit-base-patch32/model_state.pdparams",
   # "openai/clip-rn50":  [1, 1024]
   # "http://bj.bcebos.com/paddlenlp/models/community/openai/clip-rn50/model_state.pdparams",
   # "openai/clip-rn101": [1, 512]
   # "http://bj.bcebos.com/paddlenlp/models/community/openai/clip-rn101/model_state.pdparams",
   # "openai/clip-vit-large-patch14": [1, 768]
   # "http://bj.bcebos.com/paddlenlp/models/community/openai/clip-vit-large-patch14/model_state.pdparams",

paddle版本

from PIL import Image
from paddlenlp.transformers import CLIPProcessor, CLIPModel
resnet = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
images=Image.open("xxx.jpg")
inputs = processor(images=images, return_tensors="pd")
imgs_feature = resnet.get_image_features(**inputs)

torch版本

from transformers import CLIPProcessor, CLIPModel, CLIPTokenizer
from PIL import Image

# Load the CLIP model
device = "cuda" if torch.cuda.is_available() else "cpu"
model_ID = "openai/clip-vit-base-patch32"
model = CLIPModel.from_pretrained(model_ID).to(device)
preprocess = CLIPProcessor.from_pretrained(model_ID)
image = Image.open('frames_60.jpg')
inputs = preprocess(images=image, return_tensors="pt")
image_features = model.get_image_features(**inputs.to(device))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值