使用Langchain调用集成模型上下文协议(MCP)服务

作者:Tableau

原文:https://zhuanlan.zhihu.com/p/31112308637

前面分享了如何使用MCP的服务,并应用于Cusor、Claude Desktop等应用上。鉴于项目需要调用各种能力完成复杂的操作,通过热插拔的形式集成各种工具,如Manus。这里我们也可以直接调用基于MCP协议的各种服务,调用其各种各样工具能力,增强我们模型或应用的外延能力。

MCP的产生源于解决大型语言模型(LLM)应用程序的一个关键限制,即它们与外部数据源和工具的隔离。

LLM应用程序的一个关键焦点领域一直是数据传递方面。将数据传递给LLM进行推理,这一直是RAG实现、微调的目标,现在也是MCP的目标。

MCP的主要目的是标准化LLM应用程序如何连接到不同系统,如下图所示:

图片

消除自定义集成

AI代理面临的挑战是向AI代理传递数据,或者换句话说,将AI代理/基于LLM的应用程序集成到外部数据源。

人们一直在尝试通过利用GUI、网络浏览器和网络搜索来实现某种程度的无缝集成。所有这些途径都有优点和缺点。

图片

MCP有潜力作为一个通用接口,可以将其视为AI的虚拟/软件版USB-C。它实现了LLMs/AI代理与外部资源之间无缝、安全和可扩展的数据交换。MCP使用客户端-服务器架构,其中MCP主机(AI应用程序)与MCP服务器(数据/工具提供者)进行通信。开发人员可以使用MCP构建可重用、模块化的连接器,流行平台上已经提供了预构建的服务器,从而创建了一个社区驱动的生态系统。MCP的开源特性鼓励创新,允许开发人员扩展其功能,同时通过精细权限等功能维护安全性。最终,MCP旨在将AI代理从孤立的聊天机器人转变为具有上下文感知、可互操作的系统,深度集成到数字环境中。

如何再Langchain中使用MCP

Anthropic的模型上下文协议(MCP)是一个开源协议,用于将LLM与上下文、工具和提示连接起来。它有越来越多的服务器用于连接各种工具或数据源。在这里,我们展示如何将任何MCP服务器连接到LangGraph代理并使用MCP工具…

通过本地的MCP Server 调用

按顺序运行以下代码:

pip install langchain-mcp-adapters

创建服务器

vim server.py,创建如下内容并运行:

# math_server.py
frommcp.server.fastmcpimportFastMCP

mcp=FastMCP("Math")

@mcp.tool()
defadd(a:int,b:int)->int:
    """Add two numbers"""
    returna+b

@mcp.tool()
defmultiply(a:int,b:int)->int:
    """Multiply two numbers"""
    returna*b

if__name__=="__main__":
    mcp.run(transport="stdio")

关闭文本文件,使用以下命令启动并运行服务器:

python3 math_server.py

运行客户端

vim client.py.创建如下内容,并运行:

# Create server parameters for stdio connection
frommcpimportClientSession,StdioServerParameters
frommcp.client.stdioimportstdio_client
fromlangchain_mcp_adapters.toolsimportload_mcp_tools
fromlanggraph.prebuiltimportcreate_react_agent
fromlangchain_ollamaimportChatOllama
importasyncio

model=ChatOllama(model='qwen2.5:72b')

server_params=StdioServerParameters(
    command="python",
    # Make sure to update to the full absolute path to your math_server.py file
    args=["math_server.py"],
)

asyncdefrun_agent():
    asyncwithstdio_client(server_params)as(read,write):
        asyncwithClientSession(read,write)assession:
            # Initialize the connection
            awaitsession.initialize()

            # Get tools
            tools=awaitload_mcp_tools(session)

            # Create and run the agent
            agent=create_react_agent(model,tools)
            agent_response=awaitagent.ainvoke({"messages":"what's (3 + 5) x 12?"})
            returnagent_response

# Run the async function
if__name__=="__main__":
    result=asyncio.run(run_agent())
    print(result)

使用命令运行客户端:python3 client.py

通过远程的MCP Server 服务调用

按顺序运行以下代码:

pip install langchain-mcp-tools

运行客户端

vim remote_client.py.创建如下内容,并运行:

# Standard library imports
importasyncio
importlogging
importos
importsys

# Third-party imports
try:
    fromdotenvimportload_dotenv
    fromlangchain.chat_modelsimportinit_chat_model
    fromlangchain.schemaimportHumanMessage
    fromlangchain_ollamaimportChatOllama
    fromlanggraph.prebuiltimportcreate_react_agent
exceptImportErrorase:
    print(f'\nError: Required package not found: {e}')
    print('Please ensure all required packages are installed\n')
    sys.exit(1)

# Local application imports
fromlangchain_mcp_toolsimportconvert_mcp_to_langchain_tools

# A very simple logger
definit_logger()->logging.Logger:
    logging.basicConfig(
        level=logging.INFO,# logging.DEBUG,
        format='\x1b[90m[%(levelname)s]\x1b[0m %(message)s'
    )
    returnlogging.getLogger()

asyncdefrun()->None:
    # Be sure to set ANTHROPIC_API_KEY and/or OPENAI_API_KEY as needed
    load_dotenv()

    # Check the api key early to avoid showing a confusing long trace
    ifnotos.environ.get('ANTHROPIC_API_KEY'):
        raiseException('ANTHROPIC_API_KEY env var needs to be set')
    # if not os.environ.get('OPENAI_API_KEY'):
    #     raise Exception('OPENAI_API_KEY env var needs to be set')

    try:
        mcp_configs={
            'filesystem':{
                'command':'npx',
                'args':[
                    '-y',
                    '@modelcontextprotocol/server-filesystem',
                    '.'# path to a directory to allow access to
                ]
            },
            'fetch':{
                'command':'uvx',
                'args':[
                    'mcp-server-fetch'
                ]
            },
            'weather':{
                'command':'npx',
                'args':[
                    '-y',
                    '@h1deya/mcp-server-weather'
                ]
            },
        }
        tools,cleanup=awaitconvert_mcp_to_langchain_tools(
            mcp_configs,
            init_logger()
        )
        llm=ChatOllama(model='qwen2.5:72b')
        agent=create_react_agent(
            llm,
            tools
        )
        # query = 'Read the news headlines on bbc.com'
        # query = 'Read and briefly summarize the LICENSE file'
        query="Tomorrow's weather in SF?"
        print('\x1b[33m')# color to yellow
        print(query)
        print('\x1b[0m')   # reset the color
        messages=[HumanMessage(content=query)]
        result=awaitagent.ainvoke({'messages':messages})
        # the last message should be an AIMessage
        response=result['messages'][-1].content
        print('\x1b[36m')# color to cyan
        print(response)
        print('\x1b[0m')   # reset the color
    finally:
        ifcleanupisnotNone:
            awaitcleanup()
defmain()->None:
    asyncio.run(run())

if__name__=='__main__':
    main()

如果不出意外将出现,与下面类似的输出结束:

{'messages': 
[HumanMessage(content="what's (3 + 5) x 12?", 
additional_kwargs={}, response_metadata={}, 
id='87a8b6b6-9add-4da7-aea5-1b197c0fc0f5'), 
AIMessage(content='', 
additional_kwargs={'tool_calls': [{'id': 'call_1eyRzR7WpKzhMXG4ZFQAJtUD', 

'function': 
{'arguments': '{"a": 3, "b": 5}', 'name': 'add'}, 
'type': 'function'}, 
{'id': 'call_q82CX807NC3T6nHMrhoHT46E', 

'function': 
{'arguments': '{"a": 8, "b": 12}', 'name': 'multiply'}, 
'type': 'function'}], 

'refusal': None}, 
response_metadata={'token_usage': 
{'completion_tokens': 51, 
'prompt_tokens': 77, 
'total_tokens': 128, 

'completion_tokens_details': 
{'accepted_prediction_tokens': 0, 
'audio_tokens': 0, 
'reasoning_tokens': 0, 
'rejected_prediction_tokens': 0}, 

'prompt_tokens_details': 
{'audio_tokens': 0, 
'cached_tokens': 0}}, 

'model_name': 'gpt-4o-2024-08-06', 
'system_fingerprint': 'fp_eb9dce56a8', 
'finish_reason': 'tool_calls', 
'logprobs': None}, 

id='run-13c01640-f92b-48b7-9340-c2ad983eb1c8-0', 
tool_calls=[{'name': 'add', 'args': {'a': 3, 'b': 5}, 
'id': 'call_1eyRzR7WpKzhMXG4ZFQAJtUD', 
'type': 'tool_call'}, {'name': 'multiply', 
'args': {'a': 8, 'b': 12}, 
'id': 'call_q82CX807NC3T6nHMrhoHT46E', 
'type': 'tool_call'}], 

usage_metadata={'input_tokens': 77, 
'output_tokens': 51, 
'total_tokens': 128, 
'input_token_details': {'audio': 0, 
'cache_read': 0}, 

'output_token_details': {'audio': 0, 
'reasoning': 0}}), 
ToolMessage(content='8', 
name='add', 
id='f8e0aba5-7a62-44c6-92a3-5fe3b07c9bd5', 
tool_call_id='call_1eyRzR7WpKzhMXG4ZFQAJtUD'), 

ToolMessage(content='96', 
name='multiply', 
id='66b9bbd9-b99a-402f-b26c-df83f5a69fa3', 
tool_call_id='call_q82CX807NC3T6nHMrhoHT46E'), 
AIMessage(content='The result of \\((3 + 5) \\times 12\\) is 96.', 

additional_kwargs={'refusal': None}, 

response_metadata={'token_usage': {'completion_tokens': 22,
'prompt_tokens': 143,
'total_tokens': 165, 
'completion_tokens_details': {'accepted_prediction_tokens': 0, 
'audio_tokens': 0, 
'reasoning_tokens': 0, 
'rejected_prediction_tokens': 0}, 

'prompt_tokens_details': {'audio_tokens': 0, 
'cached_tokens': 0}}, 

'model_name': 'gpt-4o-2024-08-06', 
'system_fingerprint': 'fp_eb9dce56a8', 
'finish_reason': 'stop', 
'logprobs': None}, 

id='run-6c00a336-7d52-4917-9186-b282a5984b10-0', 
usage_metadata={'input_tokens': 143, 
'output_tokens': 22, 
'total_tokens': 165, 
'input_token_details': {'audio': 0, 'cache_read': 0}, 

'output_token_details': {'audio': 0, 
'reasoning': 0}})]}

MCP是一种将AI代理与提供上下文和记忆的信息和服务集成的便捷方式。

图片

### 关于LangChain4j与MCP集成 LangChain4j 是一个专门为 Java 开发者设计的框架,旨在简化大型语言模型 (LLM)集成过程[^1]。该框架提供了多种工具和抽象层,使得开发者可以更轻松地将 LLM 功能嵌入到他们的应用程序中。对于希望利用多云平台 (Multi-Cloud Platform, MCP) 提供的服务并结合 LangChain4j 来开发智能应用的企业来说,理解两者的集成方法至关重要。 #### 1. **LangChain4j 的核心能力** LangChain4j 主要通过提供统一 API 抽象以及丰富的工具箱来支持 LLM 的快速集成[^2]。这使其成为一种灵活的选择,尤其适合那些已经在使用 Java 生态系统的团队。以下是其主要特点: - 支持主流的大语言模型(如 GPT、ChatGLM 等)。 - 提供 ChatLanguageModel 和 StreamingChatLanguageModel 接口以适应不同的应用场景需求[^3]。 - 友好的 Spring Boot Starter 集成模式,便于配置和初始化[^4]。 #### 2. **MCP 平台概述** 多云平台通常指代企业级解决方案,允许用户跨多个云计算提供商管理资源和服务。这种架构的优势在于提高灵活性、降低成本以及增强数据安全性。如果计划在 MCP 上部署基于 LangChain4j 构建的应用,则需考虑以下几个方面: ##### a. 多环境适配 由于 MCP 涵盖不同供应商的技术栈,因此可能需要调整 LangChain4j 的依赖项或扩展模块以兼容特定云端服务的要求。例如,在某些情况下,您可能需要用自定义实现替换默认的语言模型客户端。 ##### b. 数据存储优化 许多 MCP 解决方案都内置了分布式数据库或者对象存储选项。为了充分利用这些优势,建议采用 LangChain4j 中的数据持久化机制并与目标存储系统对接。比如可以通过 JDBC 或 RESTful APIs 实现无缝连接。 ##### c. 容器编排支持 现代 MCP 往往依托 Kubernetes 这样的容器编排引擎运行工作负载。在这种环境下部署 LangChain4j 应用时,请确保遵循最佳实践,包括合理设置资源配置参数、启用健康检查探针等操作。 #### 3. **具体集成步骤** 下面给出一段简单的代码片段演示如何开始使用 langchain4j-spring-boot-starter 创建基础项目结构,并初步探索与外部服务协同工作的可能性: ```java // Maven dependency example for LangChain4j with Spring Boot starter <dependency> <groupId>com.langchain4j</groupId> <artifactId>langchain4j-openai-spring-boot-starter</artifactId> <version>{latest-version}</version> </dependency> @SpringBootApplication public class LangChainApp { @Autowired private LanguageModel languageModel; public static void main(String[] args){ SpringApplication.run(LangChainApp.class,args); String response = this.languageModel.generate("Tell me about LangChain4j and its capabilities."); System.out.println(response); } } ``` 上述例子展示了如何加载 OpenAI 的预训练模型并通过调用 `generate` 方法生成回复内容。实际生产环境中还需要进一步完善错误处理逻辑以及其他必要的业务功能。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值