loss不下降,ACC很低(只有0.1,0.2这种)
可能的原因有:
- 数据集有问题(噪声过多或存在过多的标签错误或类别不平衡)
- 梯度爆炸
- 梯度消失
笔者遇到的梯度爆炸情况
下图的矩阵是pooler_output(从bert得到的句子向量):
若干个不同的文本,在训练两个batch后可见模型的输出几乎一样了,这正是梯度爆炸的原因
梯度异常检验
检验模型权重更新情况、句子向量、loss值
model = BERT()
model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.00001, betas=(0.9, 0.999), eps=1e-6, weight_decay=0.01)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.1)
for i in range(epoch):
train_loader = iter(tasks_config['train_loader'])
for input_data in train_loader:
# print(input_data) # 查看模型的输入有无问题
for name, _ in input_data.items():
input_data[name] = input_data[name].to(torch.float16).long().to(device)
label = input_data.pop("label")
optimizer.zero_grad()
model_output, pooler_output = model(input_data)
Before = list(model.parameters())[0].clone() # 获取更新前模型的第0层权重
loss = criterion(model_output, label)
loss.backward()
# nn.utils.clip_grad_norm_(model.parameters(), max_norm=20, norm_type=2) # 梯度截断
optimizer.step()
# 检验模型的学习情况
After = list(model.parameters())[0].clone() # 获取更新后模型的第0层权重
predicted_label = torch.argmax(model_output, -1)
acc = accuracy_score(label.float().cpu(), predicted_label.view(-1).float().cpu())
print(loss,acc) # 打印mini-batch的损失值以及准确率
print('模型的第0层更新幅度:',torch.sum(After-Before))
print(pooler_output) # 打印句向量
- 梯度正常,更新幅度大约-15
- 梯度爆炸,更新幅度-1k+
- 梯度消失,更新幅度小于1e-2
梯度爆炸的解决方法
- 更换优化器
- 学习率小于1e-4
- 梯度截断
- 最大的正则化参数